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Preface

S-Lang is an interpreted language that was designed from the start to be easily embedded into a

program to provide it with a powerful extension language. Examples of programs that use S-Lang

as an extension language include the jed text editor and the slrn newsreader. Although S-Lang

does not exist as a separate application, it is distributed with a quite capable program called slsh

(�slang-shell�) that embeds the interpreter and allows one to execute S-Lang scripts, or simply

experiment with S-Lang at an interactive prompt. Many of the the examples in this document are

presented in the context of one of the above applications.

S-Lang is also a programmer's library that permits a programmer to develop sophisticated platform-

independent software. In addition to providing the S-Lang interpreter, the library provides facilities

for screen management, keymaps, low-level terminal I/O, etc. However, this document is concerned

only with the extension language and does not address these other features of the S-Lang library.

For information about the other components of the library, the reader is referred to the S-Lang

Library C Programmer's Guide.

A Brief History of S-Lang

I �rst began working on S-Lang sometime during the fall of 1992. At that time I was writing

a text editor (jed), which I wanted to endow with a macro language. It occurred to me that an

application-independent language that could be embedded into the editor would prove more useful

because I could envision embedding it into other programs. As a result, S-Lang was born.

S-Lang was originally a stack language that supported a postscript-like syntax. For that reason,

I named it S-Lang, where the S was supposed to emphasize its stack-based nature. About a year

later, I began to work on a preparser that would allow one unfamiliar with stack based languages

to make use of a more traditional in�x syntax. Currently, the syntax of the language resembles

C, nevertheless some postscript-like features still remain, e.g., the `%' character is still used as a

comment delimiter.
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Chapter 1

Introduction

S-Lang is a powerful interpreted language that may be embedded into an application to make

the application extensible. This enables the application to be used in ways not envisioned by the

programmer, thus providing the application with much more �exibility and power. Examples of

applications that take advantage of the interpreter in this way include the jed editor and the slrn

newsreader.

1.1 slsh � The S-Lang shell

The S-Lang distribution contains a standalone application called slsh that may be used for writing

S-Lang scripts and full-blown S-Lang based applications. For example, the author has used slsh

to create a mediacenter for his home entertainment system that integrates internet radio and tv,

podcasts, digital pictures and video, CDs, and so forth. The use of slsh in such non-interactive

modes is discussed in the chapter on 18 (slsh).

slsh also may be used interactively and has full access to all components of the S-Lang interpreter.

With features such as customizable command-line editing, history recall and completion, slsh is a

convenient environment for learning and using the language. In fact, as you are reading this manual,

it is recommended that you use slsh in its interactive mode as an aid to understanding the language.

While a standard S-Lang installation includes slsh, some some binary distributions package slsh

separately from the S-Lang library, and as such must be installed separately. For example, on

Debian Linux it can be installed via

apt-get install slsh

When called without arguments, slsh will start in interactive mode by issuing a (customizable)

slsh> prompt and waits for input. While most of the time one would enter S-Lang statements at

the prompt, slsh also accepts some other commands, most notably help:

slsh> help

Most commands must end in a semi-colon.

If a command begins with '!', then the command is passed to the shell.

Examples: !ls, !pwd, !cd foo, ...

1



2 Chapter 1. Introduction

Special commands:

help <help-topic>

apropos <something>

start_log( <optional-log-file> );

start logging input to a file (default is slsh.log)

stop_log();

stop logging input

save_input (<optional-file>);

save all previous input to a file (default: slsh.log)

quit;

Although the language normally requires variables to be declared before use, it is not necessary to

do so when using slsh interactively. For example, in this document you will see examples such as

variable x = [1:10];

variable y = sin (x^2);

At the slsh command line, the use of the variable keyword in such statements is optional:

slsh> x = [1:10]; y = sin(x^2);

As the above example suggests, one use of slsh is as a sophisticated calculator. For example,

slsh> sin (1.24) + 3*cos (1.3*PI);

-0.817572

This is especially true when combined with modules, e.g.,

slsh> require ("fits");

slsh> require ("histogram");

slsh> tbl = fit_read_table ("evt1a.fits");

slsh> engrid = [min(tbl.energy):max(energy):#1024];

slsh> spectrum = hist1d (tbl.energy[where(tbl.status==0)], engrid);

In this example, the fits module was used to read data from a binary �le called evt1a.fits, and

the histogram module was used to bin the data in the energy column into a histogram to create

a spectrum. The expression involving where �lters the data by accepting only those energy values

whose status is set to 0. The fits and histogram modules are not distributed with S-Lang but

may be obtained separately� see http://www.jedsoft.org/slang/modules/ for links to them. For

more information about modules, see the 16 (Modules) chapter in this document.

For more information about using slsh, see the chapter on 18 (slsh).

1.2 Language Features

The language features both global and local variables, branching and looping constructs, user-de�ned

functions, structures, datatypes, and arrays. In addition, there is limited support for pointer types.

The concise array syntax rivals that of commercial array-based numerical computing environments.

http://www.jedsoft.org/slang/modules/
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1.3 Data Types and Operators

The language provides built-in support for string, integer (signed and unsigned long and short),

double precision �oating point, and double precision complex numbers. In addition, it supports user

de�ned structure types, multi-dimensional array types, lists, and associative arrays. To facilitate

the construction of sophisticated data structures such as linked lists and trees, the language also

includes a �reference� type. The reference type provides much of the same �exibility as pointers in

other languages. Finally, applications embedding the interpreter may also provide special application

speci�c types, such as the Mark_Type that the jed editor provides.

The language provides standard arithmetic operations such as addition, subtraction, multiplication,

and division. It also provides support for modulo arithmetic as well as operations at the bit level,

e.g., exclusive-or. Any binary or unary operator may be extended to work with any data type,

including user-de�ned types. For example, the addition operator (+) has been extended to work

between string types to permit string concatenation.

The binary and unary operators work transparently with array types. For example, if a and b are

arrays, then a + b produces an array whose elements are the result of element by element addition of

a and b. This permits one to do vector operations without explicitly looping over the array indices.

1.4 Statements and Functions

The S-Lang language supports several types of looping constructs and conditional statements.

The looping constructs include while, do...while, for, forever, loop, foreach, and _for. The

conditional statements include if, if-then-else, and ifnot.

User de�ned functions may be de�ned to return zero, one, or more values. Functions that return zero

values are similar to �procedures� in languages such as PASCAL. The local variables of a function

are always created on a stack allowing one to create recursive functions. Parameters to a function

are always passed by value and never by reference. However, the language supports a reference data

type that allows one to simulate pass by reference.

Unlike many interpreted languages, S-Lang allows functions to be dynamically loaded (function

autoloading). It also provides constructs speci�cally designed for error handling and recovery as

well as debugging aids (e.g., function tracebacks).

Functions and variables may be declared as private belonging to a namespace associated with the

compilation unit that de�nes the function or variable. The ideas behind the namespace implemen-

tation stem from the C language and should be quite familiar to any one familiar with C.

1.5 Error Handling

The S-Lang language has a try/throw/catch/�nally exception model whose semantics are similar

to that of other languages. Users may also extend the exception class hierarchy with user-de�ned

exceptions. The ERROR_BLOCK based exception model of S-Lang 1.x is still supported but deprecated.
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1.6 Run-Time Library

Functions that compose the S-Lang run-time library are called intrinsics. Examples of S-Lang

intrinsic functions available to every S-Lang application include string manipulation functions such

as strcat, strchop, and strcmp. The S-Lang library also provides mathematical functions such as

sin, cos, and tan; however, not all applications enable the use of these intrinsics. For example, to

conserve memory, the 16 bit version of the jed editor does not provide support for any mathematics

other than simple integer arithmetic, whereas other versions of the editor do support these functions.

Most applications embedding the languages will also provide a set of application speci�c intrinsic

functions. For example, the jed editor adds over 100 application speci�c intrinsic functions to the

language. Consult your application speci�c documentation to see what additional intrinsics are

supported.

Operating systems that support dynamic linking allow a slang interpreter to dynamically link ad-

ditional libraries of intrinsic functions and variables into the interpreter. Such loadable objects are

called modules. A separate chapter of this manual is devoted to this important feature.

1.7 Input/Output

The language supports C-like stdio input/output functions such as fopen, fgets, fputs, and fclose.

In addition it provides two functions, message and error, for writing to the standard output device

and standard error. Speci�c applications may provide other I/O mechanisms, e.g., the jed editor

supports I/O to �les via the editor's bu�ers.

1.8 Obtaining more information about S-Lang

Comprehensive information about the library may be obtained via the World Wide Web from

http://www.jedsoft.org/slang/ . In particular see http://www.jedsoft.org/slang/download.html for

downloading the latest version of the library.

Users with generic questions about the interpreter are encouraged to post questions to the Usenet

newsgroup alt.lang.s-lang. More speci�c questions relating to the use of S-Lang within some

application may be better answered in an application-speci�c forum. For example, users with ques-

tions about using S-Lang as embedded in the jed editor are more likely to be answered in the

comp.editors newsgroup or on the jed mailing list. Similarly users with questions concerning slrn

will �nd news.software.readers to be a valuable source of information.

Developers who have embedded the interpreter are encouraged to join the S-Lang mailing list. To

subscribe to the list or just browse the archives, visit http://www.jedsoft.org/slang/mailinglists.html

.

http://www.jedsoft.org/slang/
http://www.jedsoft.org/slang/download.html
http://www.jedsoft.org/slang/mailinglists.html


Chapter 2

Overview of the Language

This purpose of this section is to give the reader a feel for the S-Lang language, its syntax, and its

capabilities. The information and examples presented in this section should be su�cient to provide

the reader with the necessary background to understand the rest of the document.

2.1 Variables and Functions

S-Lang is di�erent from many other interpreted languages in the sense that all variables and func-

tions must be declared before they can be used.

Variables are declared using the variable keyword, e.g.,

variable x, y, z;

declares three variables, x, y, and z. Note the semicolon at the end of the statement. All S-Lang

statements must end in a semicolon.

Unlike compiled languages such as C, it is not necessary to specify the data type of a S-Lang

variable. The data type of a S-Lang variable is determined upon assignment. For example, after

execution of the statements

x = 3;

y = sin (5.6);

z = "I think, therefore I am.";

x will be an integer, y will be a double, and z will be a string. In fact, it is even possible to re-assign

x to a string:

x = "x was an integer, but now is a string";

Finally, one can combine variable declarations and assignments in the same statement:

variable x = 3, y = sin(5.6), z = "I think, therefore I am.";

Most functions are declared using the define keyword. A simple example is

5
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define compute_average (x, y)

{

variable s = x + y;

return s / 2.0;

}

which de�nes a function that simply computes the average of two numbers and returns the result.

This example shows that a function consists of three parts: the function name, a parameter list, and

the function body.

The parameter list consists of a comma separated list of variable names. It is not necessary to declare

variables within a parameter list; they are implicitly declared. However, all other local variables used

in the function must be declared. If the function takes no parameters, then the parameter list must

still be present, but empty:

define go_left_5 ()

{

go_left (5);

}

The last example is a function that takes no arguments and returns no value. Some languages

such as PASCAL distinguish such objects from functions that return values by calling these objects

procedures. However, S-Lang, like C, does not make such a distinction.

The language permits recursive functions, i.e., functions that call themselves. The way to do this in

S-Lang is to �rst declare the function using the form:

define function-name ();

It is not necessary to declare a list of parameters when declaring a function in this way.

Perhaps the most famous example of a recursive function is the factorial function. Here is how to

implement it using S-Lang:

define factorial (); % declare it for recursion

define factorial (n)

{

if (n < 2) return 1;

return n * factorial (n - 1);

}

This example also shows how to mix comments with code. S-Lang uses the `%' character to start a

comment and all characters from the comment character to the end of the line are ignored.

2.2 Quali�ers

S-Lang 2.1 introduced support for function quali�ers as a mechanism for passing additional infor-

mation to a function. For example, consider a plotting application with a function



2.3. Strings 7

define plot (x, y)

{

variable linestyle = qualifier ("linestyle", "solid");

variable color = qualifier ("color", "black");

sys_set_color (color);

sys_set_linestyle (linestyle);

sys_plot (x,y);

}

Here the functions sys_set_linestyle, sys_set_color, and sys_plot are hypothetical low-level

functions that perform the actual work. This function may be called simply as

x = [0:10:0.1];

plot (x, sin(x));

to produce a solid black line connecting the points. Through the use of quali�ers, the color or

linestyle may be speci�ed, e.g�

plot (x, sin(x); linestyle="dashed");

would produce a �dashed� black curve, whereas

plot (x, sin(x); linestyle="dotted", color="blue");

would produce a blue �dotted� one.

2.3 Strings

Perhaps the most appealing feature of any interpreted language is that it frees the user from the

responsibility of memory management. This is particularly evident when contrasting how S-Lang

handles string variables with a lower level language such as C. Consider a function that concatenates

three strings. An example in S-Lang is:

define concat_3_strings (a, b, c)

{

return strcat (a, b, c);

}

This function uses the built-in strcat function for concatenating two or more strings. In C, the

simplest such function would look like:

char *concat_3_strings (char *a, char *b, char *c)

{

unsigned int len;

char *result;

len = strlen (a) + strlen (b) + strlen (c);

if (NULL == (result = (char *) malloc (len + 1)))
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exit (1);

strcpy (result, a);

strcat (result, b);

strcat (result, c);

return result;

}

Even this C example is misleading since none of the issues of memory management of the strings

has been dealt with. The S-Lang language hides all these issues from the user.

Binary operators have been de�ned to work with the string data type. In particular the + operator

may be used to perform string concatenation. That is, one can use the + operator as an alternative

to strcat:

define concat_3_strings (a, b, c)

{

return a + b + c;

}

See the section on 3.1.4 (Strings) for more information about string variables.

2.4 Referencing and Dereferencing

The unary pre�x operator, &, may be used to create a reference to an object, which is similar to a

pointer in other languages. References are commonly used as a mechanism to pass a function as an

argument to another function as the following example illustrates:

define compute_functional_sum (funct)

{

variable i, s;

s = 0;

for (i = 0; i < 10; i++)

{

s += (@funct)(i);

}

return s;

}

variable sin_sum = compute_functional_sum (&sin);

variable cos_sum = compute_functional_sum (&cos);

Here, the function compute_functional_sum applies the function speci�ed by the parameter funct

to the �rst 10 integers and returns the sum. The two statements following the function de�nition

show how the sin and cos functions may be used.

Note the @ operator in the de�nition of compute_functional_sum. It is known as the dereference

operator and is the inverse of the reference operator.

Another use of the reference operator is in the context of the fgets function. For example,
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define read_nth_line (file, n)

{

variable fp, line;

fp = fopen (file, "r");

while (n > 0)

{

if (-1 == fgets (&line, fp))

return NULL;

n--;

}

return line;

}

uses the fgets function to read the nth line of a �le. In particular, a reference to the local variable

line is passed to fgets, and upon return line will be set to the character string read by fgets.

Finally, references may be used as an alternative to multiple return values by passing information

back via the parameter list. The example involving fgets presented above provided an illustration

of this. Another example is

define set_xyz (x, y, z)

{

@x = 1;

@y = 2;

@z = 3;

}

variable X, Y, Z;

set_xyz (&X, &Y, &Z);

which, after execution, results in X set to 1, Y set to 2, and Z set to 3. A C programmer will note

the similarity of set_xyz to the following C implementation:

void set_xyz (int *x, int *y, int *z)

{

*x = 1;

*y = 2;

*z = 3;

}

2.5 Arrays

The S-Lang language supports multi-dimensional arrays of all datatypes. For example, one can

de�ne arrays of references to functions as well as arrays of arrays. Here are a few examples of

creating arrays:

variable A = Int_Type [10];

variable B = Int_Type [10, 3];

variable C = [1, 3, 5, 7, 9];
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The �rst example creates an array of 10 integers and assigns it to the variable A. The second example

creates a 2-d array of 30 integers arranged in 10 rows and 3 columns and assigns the result to B.

In the last example, an array of 5 integers is assigned to the variable C. However, in this case the

elements of the array are initialized to the values speci�ed. This is known as an inline-array .

S-Lang also supports something called a range-array . An example of such an array is

variable C = [1:9:2];

This will produce an array of 5 integers running from 1 through 9 in increments of 2. Similarly

[0:1:#1000] represents a 1000 element �oating point array of numbers running from 0 to 1 (inclu-

sive).

Arrays are passed by reference to functions and never by value. This permits one to write functions

that can initialize arrays. For example,

define init_array (a)

{

variable i, imax;

imax = length (a);

for (i = 0; i < imax; i++)

{

a[i] = 7;

}

}

variable A = Int_Type [10];

init_array (A);

creates an array of 10 integers and initializes all its elements to 7.

There are more concise ways of accomplishing the result of the previous example. These include:

A = [7, 7, 7, 7, 7, 7, 7, 7, 7, 7];

A = Int_Type [10]; A[[0:9]] = 7;

A = Int_Type [10]; A[*] = 7;

The second and third methods use an array of indices to index the array A. In the second, the range

of indices has been explicitly speci�ed, whereas the third example uses a wildcard form. See chapter

10 (Arrays) for more information about array indexing.

Although the examples have pertained to integer arrays, the fact is that S-Lang arrays can be of

any type, e.g.,

A = Double_Type [10];

B = Complex_Type [10];

C = String_Type [10];

D = Ref_Type [10];

create 10 element arrays of double, complex, string, and reference types, respectively. The last

example may be used to create an array of functions, e.g.,
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D[0] = &sin;

D[1] = &cos;

S-Lang arrays also can be of Any_Type. An array of such a type is capable of holding any object,

e.g.,

A = Any_Type [3];

A[0] = 1; A[1] = "string"; A[2] = (1 + 2i);

Dereferencing an Any_Type object returns the actual object. That is, @A[1] produces "string".

The language also de�nes unary, binary, and mathematical operations on arrays. For example, if A

and B are integer arrays, then A + B is an array whose elements are the sum of the elements of A

and B. A trivial example that illustrates the power of this capability is

variable X, Y;

X = [0:2*PI:0.01];

Y = 20 * sin (X);

which is equivalent to the highly simpli�ed C code:

double *X, *Y;

unsigned int i, n;

n = (2 * PI) / 0.01 + 1;

X = (double *) malloc (n * sizeof (double));

Y = (double *) malloc (n * sizeof (double));

for (i = 0; i < n; i++)

{

X[i] = i * 0.01;

Y[i] = 20 * sin (X[i]);

}

2.6 Lists

A S-Lang list is like an array except that it may contain a heterogeneous collection of data, e.g.,

my_list = { 3, 2.9, "foo", &sin };

is a list of four objects, each with a di�erent type. Like an array, the elements of a list may be

accessed via an index, e.g., x=my_list[2] will result in the assignment of "foo" to x. The most

important di�erence between an array and a list is that an array's size is �xed whereas a list may

grow or shrink. Algorithms that require such a data structure may execute many times faster when

a list is used instead of an array.

2.7 Structures and User-De�ned Types

A structure is similar to an array in the sense that it is a container object. However, the elements

of an array must all be of the same type (or of Any_Type), whereas a structure is heterogeneous. As
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an example, consider

variable person = struct

{

first_name, last_name, age

};

variable bill = @person;

bill.first_name = "Bill";

bill.last_name = "Clinton";

bill.age = 51;

In this example a structure consisting of the three �elds has been created and assigned to the variable

person. Then an instance of this structure has been created using the dereference operator and

assigned to bill. Finally, the individual �elds of bill were initialized. This is an example of an

anonymous structure.

Note: S-Lang versions 2.1 and higher permit assignment statements within the structure de�nition,

e.g.,

variable bill = struct

{

first_name = "Bill",

last_name = "Clinton",

age = 51

};

A named structure is really a new data type and may be created using the typedef keyword:

typedef struct

{

first_name, last_name, age

}

Person_Type;

variable bill = @Person_Type;

bill.first_name = "Bill";

bill.last_name = "Clinton";

bill.age = 51;

One advantage of creating a new type is that array elements of such types are automatically initialized

to instances of the type. For example,

People = Person_Type [100];

People[0].first_name = "Bill";

People[1].first_name = "Hillary";

may be used to create an array of 100 such objects and initialize the first_name �elds of the �rst

two elements. In contrast, the form using an anonymous would require a separate step to instantiate

the array elements:
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People = Struct_Type [100];

People[0] = @person;

People[0].first_name = "Bill";

People[1] = @person;

People[1].first_name = "Hillary";

Another big advantage of a user-de�ned type is that the binary and unary operators may be over-

loaded onto such types. This is explained in more detail below.

The creation and initialization of a structure may be facilitated by a function such as

define create_person (first, last, age)

{

variable person = @Person_Type;

person.first_name = first;

person.last_name = last;

person.age = age;

return person;

}

variable Bill = create_person ("Bill", "Clinton", 51);

Other common uses of structures is the creation of linked lists, binary trees, etc. For more information

about these and other features of structures, see the section on 12.3 (Linked Lists).

2.8 Namespaces

The language supports namespaces that may be used to control the scope and visibility of variables

and functions. In addition to the global or public namespace, each S-Lang source �le or compilation

unit has a private or anonymous namespace associated with it. The private namespace may be used

to de�ne symbols that are local to the compilation unit and inaccessible from the outside. The

language also allows the creation of named (non-anonymous or static) namespaces that permit

access via the namespace operator. See the chapter on 9 (Namespaces) for more information.
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Chapter 3

Data Types and Literal Constants

The current implementation of the S-Lang language permits up to 65535 distinct data types, includ-

ing prede�ned data types such as integer and �oating point, as well as specialized application-speci�c

data types. It is also possible to create new data types in the language using the typedefmechanism.

Literal constants are objects such as the integer 3 or the string "hello". The actual data type given

to a literal constant depends upon the syntax of the constant. The following sections describe the

syntax of literals of speci�c data types.

3.1 Prede�ned Data Types

The current version of S-Lang de�nes integer, �oating point, complex, and string types. It also

de�nes special purpose data types such as Null_Type, DataType_Type, and Ref_Type. These types

are discussed below.

3.1.1 Integers

The S-Lang language supports both signed and unsigned characters, short integer, long integer,

and long long integer types. On most 32 bit systems, there is no di�erence between an integer and

a long integer; however, they may di�er on 16 and 64 bit systems. Generally speaking, on a 16 bit

system, plain integers are 16 bit quantities with a range of -32767 to 32767. On a 32 bit system,

plain integers range from -2147483648 to 2147483647.

An plain integer literal can be speci�ed in one of several ways:

• As a decimal (base 10) integer consisting of the characters 0 through 9, e.g., 127. An integer

speci�ed this way cannot begin with a leading 0. That is, 0127 is not the same as 127.

• Using hexadecimal (base 16) notation consisting of the characters 0 to 9 and A through F. The

hexadecimal number must be preceded by the characters 0x. For example, 0x7F speci�es an

integer using hexadecimal notation and has the same value as decimal 127.

• In Octal notation using characters 0 through 7. The Octal number must begin with a leading

0. For example, 0177 and 127 represent the same integer.

15
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• In Binary notation using characters 0 and 1 with the 0b pre�x. For example, 21 may be

expressed in binary using 0b10101.

Short, long, long long, and unsigned types may be speci�ed by using the proper su�xes: L indicates

that the integer is a long integer, LL indicates a long long integer, h indicates that the integer is

a short integer, and U indicates that it is unsigned. For example, 1UL speci�es an unsigned long

integer.

Finally, a character literal may be speci�ed using a notation containing a character enclosed in single

quotes as 'a'. The value of the character speci�ed this way will lie in the range 0 to 256 and will

be determined by the ASCII value of the character in quotes. For example,

i = '0';

assigns to i the character 48 since the '0' character has an ASCII value of 48.

A �wide� character (unicode) may be speci�ed using the form '\x{y...y}' where y...y are hexadecimal

digits. For example,

'\x{12F}' % Latin Small Letter I With Ogonek;

'\x{1D7BC}' % Mathematical Sans-Serif Bold Italic Small Sigma

Any integer may be preceded by a minus sign to indicate that it is a negative integer.

3.1.2 Floating Point Numbers

Single and double precision �oating point literals must contain either a decimal point or an exponent

(or both). Here are examples of specifying the same double precision point number:

12. 12.0 12e0 1.2e1 120e-1 .12e2 0.12e2

Note that 12 is not a �oating point number since it contains neither a decimal point nor an exponent.

In fact, 12 is an integer.

One may append the f character to the end of the number to indicate that the number is a single

precision literal. The following are all single precision values:

12.f 12.0f 12e0f 1.2e1f 120e-1f .12e2f 0.12e2f

3.1.3 Complex Numbers

The language implements complex numbers as a pair of double precision �oating point numbers.

The �rst number in the pair forms the real part, while the second number forms the imaginary part.

That is, a complex number may be regarded as the sum of a real number and an imaginary number.

Strictly speaking, the current implementation of the S-Lang does not support generic complex

literals. However, it does support imaginary literals permitting a more generic complex number

with a non-zero real part to be constructed from the imaginary literal via addition of a real number.

An imaginary literal is speci�ed in the same way as a �oating point literal except that i or j is

appended. For example,
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12i 12.0i 12e0j

all represent the same imaginary number.

A more generic complex number may be constructed from an imaginary literal via addition, e.g.,

3.0 + 4.0i

produces a complex number whose real part is 3.0 and whose imaginary part is 4.0.

The intrinsic functions Real and Imag may be used to retrieve the real and imaginary parts of a

complex number, respectively.

3.1.4 Strings

A string literal must be enclosed in double quotes as in:

"This is a string".

As described below, the string literal may contain a su�x that speci�es how the string is to be

interpreted, e.g., a string literal such as

"$HOME/.jedrc"$

with the '$' su�x will be subject to variable name expansion.

Although there is no imposed limit on the length of a string, single-line string literals must be

less than 256 characters in length. It is possible to construct strings longer than this by string

concatenation, e.g.,

"This is the first part of a long string"

+ " and this is the second part"

S-Lang version 2.2 introduced support for multi-line string literals. There are basic variants sup-

ported. The �rst makes use of the backslash at the end of a line to indicate that the string is

continued onto the next line:

"This is a \

multi-line string. \

Note the presence of the \

backslash character at the end \

of each of the lines."

The second form of multiline string is delimited by the backquote character (`) and does not require

backslashes:

`This form does not

require backslash characters.

In fact, here the backslash

character \ has no special

meaning (unless given the ``Q' suffix`
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Note that if a backquote is to appear in such a string, then it must be doubled, as illustrated in the

above example.

Any character except a newline (ASCII 10) or the null character (ASCII 0) may appear explicitly in

a string literal. However, these characters may embedded implicitly using the mechanism described

below.

The backslash character is a special character and is used to include other special characters (such

as a newline character) in the string. The special characters recognized are:

\" -- double quote

\' -- single quote

\\ -- backslash

\a -- bell character (ASCII 7)

\t -- tab character (ASCII 9)

\n -- newline character (ASCII 10)

\e -- escape character (ASCII 27)

\xhh -- byte expressed in HEXADECIMAL notation

\ooo -- byte expressed in OCTAL notation

\dnnn -- byte expressed in DECIMAL

\u{h..h} -- the Unicode character U+h..h

\x{h..h} -- the Unicode character U+h..h [modal]

In the above table, h represents one of the HEXADECIMAL characters from the set [0-9A-Fa-f ] .

It is important to understand the distinction between the \x{h..h} and \u{h..h} forms. When

using in a string, the \u form always expands to the corresponding UTF-8 sequence regardless of

the UTF-8 mode. In contrast, when in non-UTF-8 mode, the \x form expands to a byte when given

two hex characters, or to the corresponding UTF-8 sequence when used with three or more hex

characters.

For example, to include the double quote character as part of the string, it must be preceded by a

backslash character, e.g.,

"This is a \"quote\"."

Similarly, the next example illustrates how a newline character may be included:

"This is the first line\nand this is the second."

Alternatively, slang-2.2 or newer permits

`This is a "quote".`

`This is the first line

and this is the second.`

Su�xes

A string literal may be contain a su�x that speci�es how the string is to be interpreted. The su�x

may consist of one or more of the following characters:
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R

Backslash substitution will not be performed on the string. This is the default when using

back-quoted strings.

Q

Backslash substitution will be performed on the string. This is the default when using strings

using the double-quote character.

B

If this su�x is present, the string will be interpreted as a binary string (BString_Type).

$

Variable name substitution will be performed on the string.

Not all combinations of the above controls characters are supported, nor make sense. For example,

a string with the su�x QR will cause a parse-error because Q and R have opposing meanings.

The Q and R su�xes These su�xes turn on and o� backslash expansion. Unless the R su�x

is present, all double-quoted string literals will have backslash substitution performed. By default,

backslash expansion is turned o� for backquoted strings.

Sometimes it is desirable to turn o� backslash expansion for double-quoted strings. For example,

pathnames on an MSDOS or Windows system use the backslash character as a path separator. The

R pre�x turns o� backslash expansion, and as a result the following statements are equivalent:

file = "C:\\windows\\apps\\slrn.rc";

file = "C:\\windows\\apps\\slrn.rc"Q;

file = "C:\windows\apps\slrn.rc"R;

file = `C:\windows\apps\slrn.rc`; % slang-2.2 and above

The only exception is that a backslash character is not permitted as the last character of a string

with the R su�x. That is,

string = "This is illegal\"R;

is not permitted. Without this exception, a string such as

string = "Some characters: \"R, S, T\"";

would not be parsed properly.

The $ su�x If the string contains the $ su�x, then variable name expansion will be performed

upon names pre�xed by a $ character occurring within the string, e.g.,

"The value of X is $X and the value of Y is $Y"$.
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with variable name substitution to be performed on the names X and Y. Such strings may be used

as a convenient alternative to the sprintf function.

Name expansion is carried out according to the following rules: If the string literal occurs in a

function, and the name corresponds to a variable local to the function, then the string representation

of the value of that variable will be substituted. Otherwise, if the name corresponds to a variable

that is local to the compilation unit (i.e., is declared as static or private), then its value's string

representation will be used. Otherwise, if the name corresponds to a variable that exists as a global

(public) then its value's string representation will be substituted. If the above searches fail and the

name exists in the environment, then the value of the corresponding environment variable will be

used. Otherwise, the variable will expand to the empty string.

Consider the following example:

private variable bar = "two";

putenv ("MYHOME=/home/baz");

define funct (foo)

{

variable bar = 1;

message ("file: $MYHOME/foo: garage=$MYGARAGE,bar=$bar"$);

}

When executed, this will produce the message:

file: /home/baz/foo: garage=,bar=1

assuming that MYGARAGE is not de�ned anywhere.

A name may be enclosed in braces. For example,

"${MYHOME}/foo: bar=${bar}"$

This is useful in cases when the name is followed immediately by other characters that may be

interpreted as part of the name, e.g.,

variable HELLO="Hello ";

message ("${HELLO}World"$);

will produce the message "Hello World".

3.1.5 Null_Type

Objects of type Null_Type can have only one value: NULL. About the only thing that you can do

with this data type is to assign it to variables and test for equality with other objects. Nevertheless,

Null_Type is an important and extremely useful data type. Its main use stems from the fact that

since it can be compared for equality with any other data type, it is ideal to represent the value of

an object which does not yet have a value, or has an illegal value.

As a trivial example of its use, consider
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define add_numbers (a, b)

{

if (a == NULL) a = 0;

if (b == NULL) b = 0;

return a + b;

}

variable c = add_numbers (1, 2);

variable d = add_numbers (1, NULL);

variable e = add_numbers (1,);

variable f = add_numbers (,);

It should be clear that after these statements have been executed, c will have a value of 3. It should

also be clear that d will have a value of 1 because NULL has been passed as the second parameter.

One feature of the language is that if a parameter has been omitted from a function call, the variable

associated with that parameter will be set to NULL. Hence, e and f will be set to 1 and 0, respectively.

The Null_Type data type also plays an important role in the context of structures.

3.1.6 Ref_Type

Objects of Ref_Type are created using the unary reference operator &. Such objects may be deref-

erenced using the dereference operator @. For example,

sin_ref = &sin;

y = (@sin_ref) (1.0);

creates a reference to the sin function and assigns it to sin_ref. The second statement uses the

dereference operator to call the function that sin_ref references.

The Ref_Type is useful for passing functions as arguments to other functions, or for returning

information from a function via its parameter list. The dereference operator may also used to create

an instance of a structure. For these reasons, further discussion of this important type can be found

in the section on 8.5 (Referencing Variables).

3.1.7 Array_Type, Assoc_Type, List_Type, and Struct_Type

Variables of type Array_Type, Assoc_Type, List_Type, and Struct_Type are known as container

objects. They are more complicated than the simple data types discussed so far and each obeys a

special syntax. For these reasons they are discussed in a separate chapters.

3.1.8 DataType_Type Type

S-Lang de�nes a type called DataType_Type. Objects of this type have values that are type names.

For example, an integer is an object of type Integer_Type. The literals of DataType_Type include:

Char_Type (signed character)

UChar_Type (unsigned character)

Short_Type (short integer)
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UShort_Type (unsigned short integer)

Integer_Type (plain integer)

UInteger_Type (plain unsigned integer)

Long_Type (long integer)

ULong_Type (unsigned long integer)

LLong_Type (long long integer)

ULLong_Type (unsigned long long integer)

Float_Type (single precision real)

Double_Type (double precision real)

Complex_Type (complex numbers)

String_Type (strings, C strings)

BString_Type (binary strings)

Struct_Type (structures)

Ref_Type (references)

Null_Type (NULL)

Array_Type (arrays)

Assoc_Type (associative arrays/hashes)

List_Type (lists)

DataType_Type (data types)

as well as the names of any other types that an application de�nes.

The built-in function typeof returns the data type of its argument, i.e., a DataType_Type. For

instance typeof(7) returns Integer_Type and typeof(Integer_Type) returns DataType_Type.

One can use this function as in the following example:

if (Integer_Type == typeof (x)) message ("x is an integer");

The literals of DataType_Type have other uses as well. One of the most common uses of these literals

is to create arrays, e.g.,

x = Complex_Type [100];

creates an array of 100 complex numbers and assigns it to x.

3.1.9 Boolean Type

Strictly speaking, S-Lang has no separate boolean type; rather it represents boolean values as

Char_Type objects. In particular, boolean FALSE is equivalent to Char_Type 0, and TRUE as any

non-zero Char_Type value. Since the exact value of TRUE is unspeci�ed, it is unnecessary and even

pointless to de�ne TRUE and FALSE literals in S-Lang.

3.2 Typecasting: Converting from one Type to Another

Occasionally, it is necessary to convert from one data type to another. For example, if you need

to print an object as a string, it may be necessary to convert it to a String_Type. The typecast

function may be used to perform such conversions. For example, consider
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variable x = 10, y;

y = typecast (x, Double_Type);

After execution of these statements, x will have the integer value 10 and y will have the double

precision �oating point value 10.0. If the object to be converted is an array, the typecast function

will act upon all elements of the array. For example,

x = [1:10]; % Array of integers

y = typecast (x, Double_Type);

will create an array of 10 double precision values and assign it to y. One should also realize that it is

not always possible to perform a typecast. For example, any attempt to convert an Integer_Type

to a Null_Type will result in a run-time error. Typecasting works only when datatypes are similar.

Often the interpreter will perform implicit type conversions as necessary to complete calcula-

tions. For example, when multiplying an Integer_Type with a Double_Type, it will convert the

Integer_Type to a Double_Type for the purpose of the calculation. Thus, the example involving the

conversion of an array of integers to an array of doubles could have been performed by multiplication

by 1.0, i.e.,

x = [1:10]; % Array of integers

y = 1.0 * x;

The string intrinsic function should be used whenever a string representation is needed. Using

the typecast function for this purpose will usually fail unless the object to be converted is similar

to a string� most are not. Moreover, when typecasting an array to String_Type, the typecast

function acts on each element of the array to produce another array, whereas the string function

will produce a string.

One use of string function is to print the value of an object. This use is illustrated in the following

simple example:

define print_object (x)

{

message (string (x));

}

Here, the message function has been used because it writes a string to the display. If the string

function was not used and the message function was passed an integer, a type-mismatch error would

have resulted.
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Identi�ers

The names given to variables, functions, and data types are called identi�ers. There are some

restrictions upon the actual characters that make up an identi�er. An identi�er name must start

with an alphabetic character ([A-Za-z]), an underscore character, or a dollar sign. The rest of

the characters in the name can be any combination of letters, digits, dollar signs, or underscore

characters. However, all identi�ers whose name begins with two underscore characters are reserved

for internal use by the interpreter and declarations of objects with such names should be avoided.

Examples of valid identi�ers include:

mary _3 _this_is_ok

a7e1 $44 _44$_Three

However, the following are not legal:

7abc 2e0 #xx

In fact, 2e0 actually speci�es the double precision number 2.0.

There is no limit to the maximum length of an identi�er. For practical usage it is wise to limit the

length of identi�ers to a reasonable value.

The following identi�ers are reserved by the language for use as keywords:

and andelse break case catch

continue define do else ERROR_BLOCK

exch EXIT_BLOCK finally _for for

foreach forever !if if ifnot

loop mod not or orelse

pop private public return shl

shr static struct switch __tmp

then throw try typedef USER_BLOCK0

USER_BLOCK1 USER_BLOCK2 USER_BLOCK3 USER_BLOCK4 using

variable while xor

25
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Chapter 5

Variables

As many of the preceding examples have shown, a variable must be declared before it can be used,

otherwise an unde�ned name error will be generated. A variable is declared using the variable

keyword, e.g,

variable x, y, z;

declares three variables, x, y, and z. This is an example of a variable declaration statement, and

like all statements, it must end in a semicolon.

Variables declared this way are untyped and inherit a type upon assignment. As such, type-checking

of function arguments, etc is performed at run-time. For example,

x = "This is a string";

x = 1.2;

x = 3;

x = 2i;

results in x being set successively to a string, a �oat, an integer, and to a complex number (0+2i).

Any attempt to use a variable before it has acquired a type will result in an uninitialized variable

error.

It is legal to put executable code in a variable declaration list. That is,

variable x = 1, y = sin (x);

are legal variable declarations. This also provides a convenient way of initializing a variable.

Variables are classi�ed as either global or local . A variable declared inside a function is said to be

local and has no meaning outside the function. A variable is said to be global if it was declared

outside a function. Global variables are further classi�ed as being public, static, or private,

according to the namespace where they were de�ned. See the chapter on 9 (Namespaces) for more

information about namespaces.

The following global variables are prede�ned by the language and live in the public namespace.

They are mainly used as convenience variables:

27
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$0 $1 $2 $3 $4 $5 $6 $7 $8 $9

An intrinsic variable is another type of global variable. Such variables have a de�nite type which

cannot be altered. Variables of this type may also be de�ned to be read-only, or constant variables.

An example of an intrinsic variable is PI which is a read-only double precision variable with a value

of approximately 3.14159265358979323846.
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Operators

S-Lang supports a variety of operators that are grouped into three classes: assignment operators,

binary operators, and unary operators.

An assignment operator is used to assign a value to a variable. They will be discussed more fully in

the context of the assignment statement in the section on 7.2 (Assignment Statements).

An unary operator acts only upon a single quantity while a binary operation is an operation between

two quantities. The boolean operator not is an example of an unary operator. Examples of binary

operators include the usual arithmetic operators +, -, *, and /. The operator given by - can be either

an unary operator (negation) or a binary operator (subtraction); the actual operation is determined

from the context in which it is used.

Binary operators are used in algebraic forms, e.g., a + b. Unary operators fall into one of two classes:

post�x-unary or pre�x-unary. For example, in the expression -x, the minus sign is a pre�x-unary

operator.

All binary and unary operators may be de�ned for any supported data type. For example, the

arithmetic plus operator has been extended to the String_Type data type to permit concatenation

between strings. But just because it is possible to de�ne the action of an operator upon a data type,

it does not mean that all data types support all the binary and unary operators. For example, while

String_Type supports the + operator, it does not admit the * operator.

6.1 Unary Operators

The unary operators operate only upon a single operand. They include: not, �, -, @, &, as well as

the increment and decrement operators ++ and �, respectively.

The boolean operator not acts only upon integers and produces 0 if its operand is non-zero, otherwise

it produces 1.

The bit-level not operator � performs a similar function, except that it operates on the individual

bits of its integer operand.

The arithmetic negation operator - is perhaps the most well-known unary operator. It simply

reverses the sign of its operand.

29
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The reference (&) and dereference (@) operators will be discussed in greater detail in the section

on 8.5 (Referencing Variables). Similarly, the increment (++) and decrement (�) operators will be

discussed in the context of the assignment operator.

6.2 Binary Operators

The binary operators may be grouped according to several classes: arithmetic operators, relational

operators, boolean operators, and bitwise operators.

6.2.1 Arithmetic Operators

The arithmetic operators include +, -, *, and /, which perform addition, subtraction, multiplication,

and division, respectively. In addition to these, S-Lang supports the mod operator, which divides

two numbers and produces the remainder, as as well as the power operator �.

The data type of the result produced by the use of one of these operators depends upon the data

types of the binary participants. If they are both integers, the result will be an integer. However, if

the operands are not of the same type, they will be converted to a common type before the operation

is performed. For example, if one is a �oating point type and the other is an integer, the integer

will be converted to a �oat. In general, the promotion from one type to another is such that no

information is lost, if possible. As an example, consider the expression 8/5 which indicates division

of the integer 8 by the integer 5. The result will be the integer 1 and not the �oating point value

1.6. However, 8/5.0 will produce 1.6 because 5.0 is a �oating point number.

6.2.2 Relational Operators

The relational operators are >, >=, <, <=, ==, and !=. These perform the comparisons greater than,

greater than or equal, less than, less than or equal, equal, and not equal, respectively. For most data

types, the result of the comparison will be a boolean value; however, for arrays the result will be an

array of boolean values. The section on arrays will explain this is greater detail.

Note: For S-Lang versions 2.1 and higher, relational expressions such as a<b<=c are de�ned in the

mathematical sense, i.e.,

((a < b) and (b <= c))

Simarily, (a < b <= c < d) is the same as

((a < b) and (b <= c) and (c < d))

and so on. In previous versions of S-Lang, (a<b<c) meant (a<b)<c; however this interpretation

was not very useful.

6.2.3 Boolean Operators

S-Lang supports four boolean binary operators: or, and, ||, and &&, which for most data types,

return a boolean result. In particular, the or and || operators return a non-zero value (boolean
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TRUE) if either of their operands are non-zero, otherwise they produce zero (boolean FALSE). The

and and && operators produce a non-zero value if and only if both their operands are non-zero,

otherwise they produce zero.

Unlike the operators && and ||, the and and or operators do not perform the so-called boolean

short-circuit evaluation. For example, consider the expression:

(x != 0) and (1/x > 10)

Here, if x were to have a value of zero, a division by zero error would occur because even though

x!=0 evaluates to zero, the and operator is not short-circuited and the 1/x expression would still be

evaluated. This problem can be avoided using the short-circuiting && operator:

(x != 0) && (1/x > 10)

Another di�erence between the short-circuiting (&&,||) and the non-short-circuiting operators

(and,or) is that the short-circuiting forms work only with integer or boolean types. In contrast, if

either of the operands of the and or or operators is an array then a corresponding array of boolean

values will result. This is explained in more detail in the section on arrays.

Note: the short-circuiting operators && and || were �rst introduced in S-Lang 2.1; they are not

available in older versions.

6.2.4 Bitwise Operators

The bitwise binary operators are currently de�ned for integer operands and are used for bit-level

operations. Operators that fall in this class include &, |, shl, shr, and xor. The & operator performs

a boolean AND operation between the corresponding bits of the operands. Similarly, the | operator
performs the boolean OR operation on the bits. The bit-shifting operators shl and shr shift the

bits of the �rst operand by the number given by the second operand to the left or right, respectively.

Finally, the xor performs an EXCLUSIVE-OR operation.

These operators are commonly used to manipulate variables whose individual bits have distinct

meanings. In particular, & is usually used to test bits, | can be used to set bits, and xor may be

used to �ip a bit.

As an example of using & to perform tests on bits, consider the following: The jed text editor

stores some of the information about a bu�er in a bitmapped integer variable. The value of this

variable may be retrieved using the jed intrinsic function getbuf_info, which actually returns four

quantities: the bu�er �ags, the name of the bu�er, directory name, and �le name. For the purposes

of this section, only the bu�er �ags are of interest and can be retrieved via a function such as

define get_buffer_flags ()

{

variable flags;

(,,,flags) = getbuf_info ();

return flags;

}

The bu�er �ags object is a bitmapped quantity where the 0th bit indicates whether or not the bu�er

has been modi�ed, the �rst bit indicates whether or not autosave has been enabled for the bu�er,
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and so on. Consider for the moment the task of determining if the bu�er has been modi�ed. This

can be determined by looking at the zeroth bit: if it is 0 the bu�er has not been modi�ed, otherwise

it has been modi�ed. Thus we can create the function,

define is_buffer_modified ()

{

variable flags = get_buffer_flags ();

return (flags & 1);

}

where the integer 1 has been used since it is represented as an object with all bits unset, except for

the zeroth one, which is set. (At this point, it should also be apparent that bits are numbered from

zero, thus an 8 bit integer consists of bits 0 to 7, where 0 is the least signi�cant bit and 7 is the most

signi�cant one.) Similarly, we can create another function

define is_autosave_on ()

{

variable flags = get_buffer_flags ();

return (flags & 2);

}

to determine whether or not autosave has been turned on for the bu�er.

The shl operator may be used to form the integer with only the nth bit set. For example, 1 shl 6

produces an integer with all bits set to zero except the sixth bit, which is set to one. The following

example exploits this fact:

define test_nth_bit (flags, nth)

{

return flags & (1 shl nth);

}

6.2.5 The Namespace Operator

The operator -> is used to in conjunction with a namespace to access an object within the namespace.

For example, if A is the name of a namespace containing the variable v, then A->v refers to that

variable. Namespaces are discussed more fully in the chapter on 9 (Namespaces).

6.2.6 Operator Precedence

6.2.7 Binary Operators and Functions Returning Multiple Values

Care must be exercised when using binary operators with an operand that returns multiple values.

In fact, the current implementation of the S-Lang language will produce incorrect results if both

operands of a binary expression return multiple values. At most, only one of operands of a binary

expression can return multiple values, and that operand must be the �rst one, not the second. For

example,
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define read_line (fp)

{

variable line, status;

status = fgets (&line, fp);

if (status == -1)

return -1;

return (line, status);

}

de�nes a function, read_line that takes a single argument specifying a handle to an open �le, and

returns one or two values, depending upon the return value of fgets. Now consider

while (read_line (fp) > 0)

{

text = ();

% Do something with text

.

.

}

Here the relational binary operator > forms a comparison between one of the return values (the one

at the top of the stack) and 0. In accordance with the above rule, since read_line returns multiple

values, it must occur as the left binary operand. Putting it on the right as in

while (0 < read_line (fp)) % Incorrect

{

text = ();

% Do something with text

.

.

}

violates the rule and will result in the wrong answer. For this reason, one should avoid using a

function that returns muliple return values as a binary operand.

6.3 Mixing Integer and Floating Point Arithmetic

If a binary operation (+, -, * , /) is performed on two integers, the result is an integer. If at least

one of the operands is a �oating point value, the other will be converted to a �oating point value,

and a �oating point result be produced. For example:

11 / 2 --> 5 (integer)

11 / 2.0 --> 5.5 (double)

11.0 / 2 --> 5.5 (double)

11.0 / 2.0 --> 5.5 (double)

Sometimes to achive the desired result, it is necessary to explicitly convert from one data type to

another. For example, suppose that a and b are integers, and that one wants to compute a/b using
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�oating point arithmetic. In such a case, it is necessary to convert at least one of the operands to a

�oating point value using, e.g., the double function:

x = a/double(b);

6.4 Short Circuit Boolean Evaluation

As of S-Lang version 2.1, use of the andelse and orelse have been deprecated in favor

of the && and || short-circuiting operators.

The boolean operators or and and are not short circuited as they are in some languages. S-Lang

uses orelse and andelse expressions for short circuit boolean evaluation. However, these are not

binary operators. Expressions of the form:

expr-1 and expr-2 and ... expr-n

can be replaced by the short circuited version using andelse:

andelse {expr-1 } {expr-2 } ... {expr-n }

A similar syntax holds for the orelse operator. For example, consider the statement:

if ((x != 0) and (1/x > 10)) do_something ();

Here, if x were to have a value of zero, a division by zero error would occur because even though

x!=0 evaluates to zero, the and operator is not short circuited and the 1/x expression would be

evaluated causing division by zero. For this case, the andelse expression could be used to avoid the

problem:

if (andelse

{x != 0}

{1 / x > 10}) do_something ();
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Statements

Loosely speaking, a statement is composed of expressions that are grouped according to the syntax

or grammar of the language to express a complete computation. A semicolon is used to denote the

end of a statement.

A statement that occurs within a function is executed only during execution of the function. How-

ever, statements that occur outside the context of a function are evaluated immediately.

The language supports several di�erent types of statements such as assignment statements, condi-

tional statements, and so forth. These are described in detail in the following sections.

7.1 Variable Declaration Statements

Variable declarations were already discussed in the chapter on 5 (Variables). For the sake of com-

pleteness, a variable declaration is a statement of the form

variable variable-declaration-list ;

where the variable-declaration-list is a comma separated list of one or more variable names with

optional initializations, e.g.,

variable x, y = 2, z;

7.2 Assignment Statements

Perhaps the most well known form of statement is the assignment statement . Statements of this

type consist of a left-hand side, an assignment operator, and a right-hand side. The left-hand side

must be something to which an assignment can be performed. Such an object is called an lvalue.

The most common assignment operator is the simple assignment operator =. Examples of its use

include

x = 3;

35
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x = some_function (10);

x = 34 + 27/y + some_function (z);

x = x + 3;

In addition to the simple assignment operator, S-Lang also supports the binary assignment opera-

tors:

+= -= *= /= &= |=

Internally, S-Lang transforms

a += b;

to

a = a + b;

Likewise a-=b is transformed to a=a-b, a*=b is transformed to a=a*b, and so on.

It is extremely important to realize that, in general, a+b is not equal to b+a. For example if a and b

are strings, then a+b will be the string resulting from the concatenation of a and b, which generally

is not he same as the concatenation of b with a. This means that a+=b may not be the same as

a=b+a, as the following example illustrates:

a = "hello"; b = "world";

a += b; % a will become "helloworld"

c = b + a; % c will become "worldhelloworld"

Since adding or subtracting 1 from a variable is quite common, S-Lang also supports the unary

increment and decrement operators ++, and �, respectively. That is, for numeric data types,

x = x + 1;

x += 1;

x++;

are all equivalent. Similarly,

x = x - 1;

x -= 1;

x--;

are also equivalent.

Strictly speaking, ++ and � are unary operators. When used as x++, the ++ operator is said to be

a post�x-unary operator. However, when used as ++x it is said to be a pre�x-unary operator. The

current implementation does not distinguish between the two forms, thus x++ and ++x are equivalent.

The reason for this equivalence is that assignment expressions do not return a value in the S-Lang

language as they do in C. Thus one should exercise care and not try to write C-like code such as

x = 10;

while (--x) do_something (x); % Ok in C, but not in S-Lang
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The closest valid S-Lang form involves a comma-expression:

x = 10;

while (x--, x) do_something (x); % Ok in S-Lang and in C

S-Lang also supports a multiple-assignment statement. It is discussed in detail in the section on

8.4 (Multiple Assignment Statement).

7.3 Conditional and Looping Statements

S-Lang supports a wide variety of conditional and looping statements. These constructs operate

on statements grouped together in blocks. A block is a sequence of S-Lang statements enclosed in

braces and may contain other blocks. However, a block cannot include function declarations. In the

following, statement-or-block refers to either a single S-Lang statement or to a block of statements,

and integer-expression is an integer-valued or boolean expression. next-statement represents the

statement following the form under discussion.

7.3.1 Conditional Forms

if

The simplest condition statement is the if statement. It follows the syntax

if (integer-expression ) statement-or-block next-statement

If integer-expression evaluates to a non-zero (boolean TRUE) result, then the statement or group

of statements implied statement-or-block will get executed. Otherwise, control will proceed to next-

statement .

An example of the use of this type of conditional statement is

if (x != 0)

{

y = 1.0 / x;

if (x > 0) z = log (x);

}

This example illustrates two if statements where the second if statement is part of the block of

statements that belong to the �rst.

if-else

Another form of if statement is the if-else statement. It follows the syntax:

if (integer-expression ) statement-or-block-1 else statement-or-block-2

next-statement
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Here, if expression evaluates to a non-zero integer, statement-or-block-1 will get executed and control

will pass on to next-statement . However, if expression evaluates to zero, statement-or-block-2 will

get executed before continuing on to next-statement . A simple example of this form is

if (x > 0)

z = log (x);

else

throw DomainError, "x must be positive";

Consider the more complex example:

if (city == "Boston")

if (street == "Beacon") found = 1;

else if (city == "Madrid")

if (street == "Calle Mayor") found = 1;

else found = 0;

This example illustrates a problem that beginners have with if-else statements. Syntactically, this

example is equivalent to

if (city == "Boston")

{

if (street == "Beacon") found = 1;

else if (city == "Madrid")

{

if (street == "Calle Mayor") found = 1;

else found = 0;

}

}

although the indentation indicates otherwise. It is important to understand the grammar and not

be seduced by the indentation!

ifnot

One often encounters if statements similar to

if (integer-expression == 0) statement-or-block

or equivalently,

if (not(integer-expression )) statement-or-block

The ifnot statement was added to the language to simplify the handling of such statements. It

obeys the syntax

ifnot (integer-expression ) statement-or-block

and is functionally equivalent to



7.3. Conditional and Looping Statements 39

if (not (expression )) statement-or-block

Note: The ifnot keyword was added in version 2.1 and is not supported by earlier versions. For

compatibility with older code, the !if keyword can be used, although its use is deprecated in favor

of ifnot.

orelse, andelse

As of S-Lang version 2.1, use of the andelse and orelse have been deprecated in favor

of the && and || short-circuiting operators.

The syntax for the orelse statement is:

orelse {integer-expression-1 } ... {integer-expression-n }

This causes each of the blocks to be executed in turn until one of them returns a non-zero integer

value. The result of this statement is the integer value returned by the last block executed. For

example,

orelse { 0 } { 6 } { 2 } { 3 }

returns 6 since the second block is the �rst to return a non-zero result. The last two block will not

get executed.

The syntax for the andelse statement is:

andelse {integer-expression-1 } ... {integer-expression-n }

Each of the blocks will be executed in turn until one of them returns a zero value. The result of this

statement is the integer value returned by the last block executed. For example,

andelse { 6 } { 2 } { 0 } { 4 }

evaluates to 0 since the third block will be the last to execute.

switch

The switch statement deviates from its C counterpart. The syntax is:

switch (x)

{ ... : ...}

.

.

{ ... : ...}

The `:' operator is a special symbol that in the context of the switch statement, causes the top item

on the stack to be tested, and if it is non-zero, the rest of the block will get executed and control

will pass out of the switch statement. Otherwise, the execution of the block will be terminated and

the process will be repeated for the next block. If a block contains no : operator, the entire block
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is executed and control will pass onto the next statement following the switch statement. Such a

block is known as the default case.

As a simple example, consider the following:

switch (x)

{ x == 1 : message("Number is one.");}

{ x == 2 : message("Number is two.");}

{ x == 3 : message("Number is three.");}

{ x == 4 : message("Number is four.");}

{ x == 5 : message("Number is five.");}

{ message ("Number is greater than five.");}

Suppose x has an integer value of 3. The �rst two blocks will terminate at the `:' character

because each of the comparisons with x will produce zero. However, the third block will execute to

completion. Similarly, if x is 7, only the last block will execute in full.

A more familiar way to write the previous example is to make use of the case keyword:

switch (x)

{ case 1 : message("Number is one.");}

{ case 2 : message("Number is two.");}

{ case 3 : message("Number is three.");}

{ case 4 : message("Number is four.");}

{ case 5 : message("Number is five.");}

{ message ("Number is greater than five.");}

The case keyword is a more useful comparison operator because it can perform a comparison between

di�erent data types while using == may result in a type-mismatch error. For example,

switch (x)

{ (x == 1) or (x == "one") : message("Number is one.");}

{ (x == 2) or (x == "two") : message("Number is two.");}

{ (x == 3) or (x == "three") : message("Number is three.");}

{ (x == 4) or (x == "four") : message("Number is four.");}

{ (x == 5) or (x == "five") : message("Number is five.");}

{ message ("Number is greater than five.");}

will fail because the == operation is not de�ned between strings and integers. The correct way to

write this is to use the case keyword:

switch (x)

{ case 1 or case "one" : message("Number is one.");}

{ case 2 or case "two" : message("Number is two.");}

{ case 3 or case "three" : message("Number is three.");}

{ case 4 or case "four" : message("Number is four.");}

{ case 5 or case "five" : message("Number is five.");}

{ message ("Number is greater than five.");}
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7.3.2 Looping Forms

In this section, the various looping statements are discussed. Each of these statements support an

optional then clause, which is discussed in a separate section below.

while

The while statement follows the syntax

while (integer-expression ) statement-or-block [ then statement-or-block ]

next-statement

It simply causes statement-or-block to get executed as long as integer-expression evaluates to a

non-zero result. For example,

i = 10;

while (i)

{

i--;

newline ();

}

will cause the newline function to get called 10 times. However,

i = -10;

while (i)

{

i--;

newline ();

}

would loop forever (or until i wraps from the most negative integer value to the most positive and

then decrements to zero).

If you are a C programmer, do not let the syntax of the language seduce you into writing this

example as you would in C:

i = 10;

while (i--) newline ();

Keep in mind that expressions such as i� do not return a value in S-Lang as they do in C. The

same e�ect can be achieved to use a comma to separate the expressions as in

i = 10;

while (i, i--) newline ();

do...while

The do...while statement follows the syntax
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do statement-or-block while (integer-expression ); [ then statement-or-block ]

The main di�erence between this statement and the while statement is that the do...while form

performs the test involving integer-expression after each execution of statement-or-block rather than

before. This guarantees that statement-or-block will get executed at least once.

A simple example from the jed editor follows:

bob (); % Move to beginning of buffer

do

{

indent_line ();

}

while (down (1));

This will cause all lines in the bu�er to get indented via the jed intrinsic function indent_line.

for

Perhaps the most complex looping statement is the for statement; nevertheless, it is a favorite of

many C programmers. This statement obeys the syntax

for (init-expression ; integer-expression ; end-expression ) statement-or-block [

then statement-or-block ] next-statement

In addition to statement-or-block , its speci�cation requires three other expressions. When executed,

the for statement evaluates init-expression, then it tests integer-expression. If integer-expression

evaluates to zero, control passes to next-statement . Otherwise, it executes statement-or-block as

long as integer-expression evaluates to a non-zero result. After every execution of statement-or-

block , end-expression will get evaluated.

This statement is almost equivalent to

init-expression ; while (integer-expression ) { statement-or-block

end-expression ; }

The reason that they are not fully equivalent involves what happens when statement-or-block con-

tains a continue statement.

Despite the apparent complexity of the for statement, it is very easy to use. As an example, consider

s = 0;

for (i = 1; i <= 10; i++) s += i;

which computes the sum of the �rst 10 integers.

loop

The loop statement simply executes a block of code a �xed number of times. It follows the syntax
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loop (integer-expression ) statement-or-block [ then statement-or-block ]

next-statement

If the integer-expression evaluates to a positive integer, statement-or-block will get executed that

many times. Otherwise, control will pass to next-statement .

For example,

loop (10) newline ();

will execute the newline function 10 times.

_for

Like loop, the _for statement simply executes a block of code a �xed number times. Unlike the

loop statement, the _for loop is useful in situations where the loop index is needed. It obeys the

syntax

_for loop-variable (first-value , last-value , increment ) block [ then

statement-or-block ] next-statement

Each time through the loop, the loop-variable will take on the successive values dictated by the other

parameters. The �rst time through, the loop-variable will have the value of �rst-value. The second

time its value will be �rst-value + increment , and so on. The loop will terminate when the value

of the loop index exceeds last-value. The current implementation requires the control parameters

�rst-value, last-value, and increment to be integer-valued expressions.

For example, the _for statement may be used to compute the sum of the �rst ten integers:

s = 0;

_for i (1, 10, 1)

s += i;

The execution speed of the _for loop is more than twice as fast as the more powerful for loop

making it a better choice for many situations.

forever

The forever statement is similar to the loop statement except that it loops forever, or until a break

or a return statement is executed. It obeys the syntax

forever statement-or-block [ then statement-or-block ]

A trivial example of this statement is

n = 10;

forever

{

if (n == 0) break;

newline ();

n--;

}
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foreach

The foreach statement is used to loop over one or more statements for every element of an object.

Most often the object will be a container object such as an array, structure, or associative arrays,

but it need not be.

The simple type of foreach statement obeys the syntax

foreach var (object ) statement-or-block [ then statement-or-block ]

Here object can be an expression that evaluates to a value. Each time through the loop the variable

var will take on a value that depends upon the data type of the object being processed. For container

objects, var will take on values of successive members of the object.

A simple example is

foreach fruit (["apple", "peach", "pear"])

process_fruit (fruit);

This example shows that if the container object is an array, then successive elements of the array are

assigned to fruit prior to each execution cycle. If the container object is a string, then successive

characters of the string are assigned to the variable.

What actually gets assigned to the variable may be controlled via the using form of the foreach

statement. This more complex type of foreach statement follows the syntax

foreach var ( container-object ) using ( control-list ) statement-or-block

The allowed values of control-list will depend upon the type of container object. For associative

arrays (Assoc_Type), control-list speci�es whether keys, values, or both are used. For example,

foreach k (a) using ("keys")

{

.

.

}

results in the keys of the associative array a being successively assigned to k. Similarly,

foreach v (a) using ("values")

{

.

.

}

will cause the values to be used. The form

foreach k,v (a) using ("keys", "values")

{

.

.

}
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may be used when both keys and values are desired.

Similarly, for linked-lists of structures, one may walk the list via code like

foreach s (linked_list) using ("next")

{

.

.

}

This foreach statement is equivalent

s = linked_list;

while (s != NULL)

{

.

.

s = s.next;

}

Consult the type-speci�c documentation for a discussion of the using control words, if any, appro-

priate for a given type.

7.3.3 break, return, and continue

S-Lang also includes the non-local transfer statements return, break, and continue. The return

statement causes control to return to the calling function while the break and continue statements

are used in the context of loop structures. Consider:

define fun ()

{

forever

{

s1;

s2;

..

if (condition_1) break;

if (condition_2) return;

if (condition_3) continue;

..

s3;

}

s4;

..

}

Here, a function fun has been de�ned that contains a forever loop consisting of statements s1,

s2,...,s3, and three if statements. As long as the expressions condition_1, condition_2, and

condition_3 evaluate to zero, the statements s1, s2,...,s3 will be repeatedly executed. However, if

condition_1 returns a non-zero value, the break statement will get executed, and control will pass
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out of the forever loop to the statement immediately following the loop, which in this case is s4.

Similarly, if condition_2 returns a non-zero number, the return statement will cause control to

pass back to the caller of fun. Finally, the continue statement will cause control to pass back to

the start of the loop, skipping the statement s3 altogether.

7.3.4 The looping then clause

As mentioned above, all the looping statements support an optional then clause. The statements

that comprise this clause get executed only when the loop has run to completion and was not

prematurely terminated via a break statement. As an example, consider the following:

count = 0;

max_tries = 20;

while (count < max_tries)

{

if (try_something ())

break;

count++;

% Failed -- try again

}

if (count == 20)

throw RunTimeError, "try_something failed 20 times";

Here, the code makes 20 attempts to perform some task (via the try_something function) and if

not successful it will throw an exception. Compare the above to an equivalent form that makes use

of a then-clause for the loop statement:

max_tries = 20;

loop (max_tries)

{

if (try_something ())

break;

% Failed -- try again

}

then throw RunTimeError, "try_something failed 20 times";

Here, the then statement would get executed only if the loop statement has run to completion,

i.e., loops 20 times in this case. This only happens if the try_something function fails each time

through the loop. However, if the try_something function succeeds, then the break statement

will get executed causing the loop to abort prematurely, which would result in the then clause not

getting executed.

The use of such a construct can also simplify code such as:

if (some_condition)

{

foo_statements;

if (another_condition)

bar_statements;
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else

fizzle_statements;

}

else fizzle_statements;

In this case the fizzle_statements are duplicated making the code ugly and less maintainable.

Ideally one would wrap the fizzle_statements in a separate function and call it twice. However,

this is not always possible or convenient. The duplication can be eliminated by using the then form

of the loop statement:

loop (some_condition != 0)

{

foo_statements;

if (another_condition)

{

bar_statements;

break;

}

}

then fizzle_statements;

Here, the expression some_condition != 0 is going to result in either 0 or 1, causing the code

to execute 0 or 1 loops. Since the fizzle_statements are contained in the then clause, they

will get executed only when the requested number of loops executes to completion. Executing 0

loops is regarded as successful completion of the loop statement. Hence, when some_condition

is 0, the fizzle_statements will get executed. The fizzle_statements will not get executed

only when the loop is prematurely terminated, and that will occur when both some_condition and

another_condition are non-zero.
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Chapter 8

Functions

There are essentially two classes of functions that may be called from the interpreter: intrinsic

functions and slang functions.

An intrinsic function is one that is implemented in C or some other compiled language and is callable

from the interpreter. Nearly all of the built-in functions are of this variety. At the moment the basic

interpreter provides nearly 300 intrinsic functions. Examples include the trigonometric functions

sin and cos, string functions such as strcat, etc. Dynamically loaded modules such as the png and

pcre modules add additional intrinsic functions.

The other type of function is written in S-Lang and is known simply as a �S-Lang function�. Such

a function may be thought of as a group of statements that work together to perform a computation.

The speci�cation of such functions is the main subject of this chapter.

8.1 Declaring Functions

Like variables, functions must be declared before they can be used. The define keyword is used for

this purpose. For example,

define factorial ();

is su�cient to declare a function named factorial. Unlike the variable keyword used for declaring

variables, the define keyword does not accept a list of names.

Usually, the above form is used only for recursive functions. In most cases, the function name is

almost always followed by a parameter list and the body of the function:

define function-name (parameter-list ) { statement-list }

The function-name is an identi�er and must conform to the naming scheme for identi�ers discussed

in the chapter on 4 (Identi�ers). The parameter-list is a comma-separated list of variable names that

represent parameters passed to the function, and may be empty if no parameters are to be passed.

The variables in the parameter-list are implicitly declared, thus, there is no need to declare them

via a variable declaration statement. In fact any attempt to do so will result in a syntax error.

49
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The body of the function is enclosed in braces and consists of zero or more statements (statement-

list). While there are no imposed limits upon the number statements that may occur within a S-

Lang function, it is considered poor programming practice if a function contains many statements.

This notion stems from the belief that a function should have a simple, well-de�ned purpose.

8.2 Parameter Passing Mechanism

Parameters to a function are always passed by value and never by reference. To see what this means,

consider

define add_10 (a)

{

a = a + 10;

}

variable b = 0;

add_10 (b);

Here a function add_10 has been de�ned, which when executed, adds 10 to its parameter. A variable

b has also been declared and initialized to zero before being passed to add_10. What will be the

value of b after the call to add_10? If S-Lang were a language that passed parameters by reference,

the value of b would be changed to 10. However, S-Lang always passes by value, which means that

b will retain its value during and after after the function call.

S-Lang does provide a mechanism for simulating pass by reference via the reference operator. This

is described in greater detail in the next section.

If a function is called with a parameter in the parameter list omitted, the corresponding variable in

the function will be set to NULL. To make this clear, consider the function

define add_two_numbers (a, b)

{

if (a == NULL) a = 0;

if (b == NULL) b = 0;

return a + b;

}

This function must be called with two parameters. However, either of them may omitted by calling

the function in one of the following ways:

variable s = add_two_numbers (2,3);

variable s = add_two_numbers (2,);

variable s = add_two_numbers (,3);

variable s = add_two_numbers (,);

The �rst example calls the function using both parameters, but at least one of the parameters was

omitted in the other examples. If the parser recognizes that a parameter has been omitted by �nding

a comma or right-parenthesis where a value is expected, it will substitute NULL for missing value.

This means that the parser will convert the latter three statements in the above example to:
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variable s = add_two_numbers (2, NULL);

variable s = add_two_numbers (NULL, 3);

variable s = add_two_numbers (NULL, NULL);

It is important to note that this mechanism is available only for function calls that specify more

than one parameter. That is,

variable s = add_10 ();

is not equivalent to add_10(NULL). The reason for this is simple: the parser can only tell whether or

not NULL should be substituted by looking at the position of the comma character in the parameter

list, and only function calls that indicate more than one parameter will use a comma. A mechanism

for handling single parameter function calls is described later in this chapter.

8.3 Returning Values

The usual way to return values from a function is via the return statement. This statement has

the simple syntax

return expression-list ;

where expression-list is a comma separated list of expressions. If a function does not return any

values, the expression list will be empty. A simple example of a function that can return multiple

values (two in this case) is:

define sum_and_diff (x, y)

{

variable sum, diff;

sum = x + y; diff = x - y;

return sum, diff;

}

8.4 Multiple Assignment Statement

In the previous section an example of a function returning two values was given. That function can

also be written somewhat simpler as:

define sum_and_diff (x, y)

{

return x + y, x - y;

}

This function may be called using

(s, d) = sum_and_diff (12, 5);
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After the above line is executed, s will have a value of 17 and the value of d will be 7.

The most general form of the multiple assignment statement is

( var_1, var_2, ..., var_n ) = expression;

Here expression is an arbitrary expression that leaves n items on the stack, and var_k represents

an l-value object (permits assignment). The assignment statement removes those values and assigns

them to the speci�ed variables. Usually, expression is a call to a function that returns multiple

values, but it need not be. For example,

(s,d) = (x+y, x-y);

produces results that are equivalent to the call to the sum_and_diff function. Another common use

of the multiple assignment statement is to swap values:

(x,y) = (y,x);

(a[i], a[j], a[k]) = (a[j], a[k], a[i]);

If an l-value is omitted from the list, then the corresponding value will be removed fro the stack.

For example,

(s, ) = sum_and_diff (9, 4);

assigns the sum of 9 and 4 to s and the di�erence (9-4) is removed from the stack. Similarly,

() = fputs ("good luck", fp);

causes the return value of the fputs function to be discarded.

It is possible to create functions that return a variable number of values instead of a �xed number .

Although such functions are discouraged, it is easy to cope with them. Usually, the value at the

top of the stack will indicate the actual number of return values. For such functions, the multiple

assignment statement cannot directly be used. To see how such functions can be dealt with, consider

the following function:

define read_line (fp)

{

variable line;

if (-1 == fgets (&line, fp))

return -1;

return (line, 0);

}

This function returns either one or two values, depending upon the return value of fgets. Such a

function may be handled using:

status = read_line (fp);

if (status != -1)

{
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s = ();

.

.

}

In this example, the last value returned by read_line is assigned to status and then tested. If it

is non-zero, the second return value is assigned to s. In particular note the empty set of parenthesis

in the assignment to s. This simply indicates that whatever is on the top of the stack when the

statement is executed will be assigned to s.

8.5 Referencing Variables

One can achieve the e�ect of passing by reference by using the reference (&) and dereference (@)

operators. Consider again the add_10 function presented in the previous section. This time it is

written as:

define add_10 (a)

{

@a = @a + 10;

}

variable b = 0;

add_10 (&b);

The expression &b creates a reference to the variable b and it is the reference that gets passed to

add_10. When the function add_10 is called, the value of the local variable a will be a reference

to the variable b. It is only by dereferencing this value that b can be accessed and changed. So,

the statement @a=@a+10 should be read as �add 10 to the value of the object that a references and

assign the result to the object that a references�.

The reader familiar with C will note the similarity between references in S-Lang and pointers in C.

References are not limited to variables. A reference to a function may also be created and passed

to other functions. As a simple example from elementary calculus, consider the following function

which returns an approximation to the derivative of another function at a speci�ed point:

define derivative (f, x)

{

variable h = 1e-6;

return ((@f)(x+h) - (@f)(x)) / h;

}

define x_squared (x)

{

return x^2;

}

dydx = derivative (&x_squared, 3);

When the derivative function is called, the local variable f will be a reference to the x_squared

function. The x_squared function is called with the speci�ed parameters by dereferencing f with

the dereference operator.
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8.6 Functions with a Variable Number of Arguments

S-Lang functions may be called with a variable number of arguments. A natural example of

such functions is the strcat function, which takes one or more string arguments and returns the

concatenated result. An example of di�erent sort is the strtrim function which moves both leading

and trailing whitespace from a string. In this case, when called with one argument (the string to be

�trimmed�), the characters that are considered to be whitespace are those in the character-set that

have the whitespace property (space, tab, newline, ...). However, when called with two arguments,

the second argument may be used to specify the characters that are to be considered as whitespace.

The strtrim function exempli�es a class of variadic functions where the additional arguments are

used to pass optional information to the function. Another more �exible and powerful way of passing

optional information is through the use of quali�ers, which is the subject of the next section.

When a S-Lang function is called with parameters, those parameters are placed on the run-time

stack. The function accesses those parameters by removing them from the stack and assigning them

to the variables in its parameter list. This details of this operation are for the most part hidden

from the programmer. But what happens when the number of parameters in the parameter list is

not equal to the number of parameters passed to the function? If the number passed to the function

is less than what the function expects, a StackUnderflow error could result as the function tries

to remove items from the stack. If the number passed is greater than the number in the parameter

list, then the extras will remain on the stack. The latter feature makes it possible to write functions

that take a variable number of arguments.

Consider the add_10 example presented earlier. This time it is written

define add_10 ()

{

variable x;

x = ();

return x + 10;

}

variable s = add_10 (12); % ==> s = 22;

For the uninitiated, this example looks as if it is destined for disaster. The add_10 function appears

to accept zero arguments, yet it was called with a single argument. On top of that, the assignment

to x might look a bit strange. The truth is, the code presented in this example makes perfect sense,

once you realize what is happening.

First, consider what happens when add_10 is called with the parameter 12. Internally, 12 is pushed

onto the stack and then the function called. Now, consider the function add_10 itself. In it, x is a

local variable. The strange looking assignment `x=()' causes whatever is on the top of the stack to

be assigned to x. In other words, after this statement, the value of x will be 12, since 12 is at the

top of the stack.

A generic function of the form

define function_name (x, y, ..., z)

{

.

.

}
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is transformed internally by the parser to something akin to

define function_name ()

{

variable x, y, ..., z;

z = ();

.

.

y = ();

x = ();

.

.

}

before further parsing. (The add_10 function, as de�ned above, is already in this form.) With this

knowledge in hand, one can write a function that accepts a variable number of arguments. Consider

the function:

define average_n (n)

{

variable x, y;

variable s;

if (n == 1)

{

x = ();

s = x;

}

else if (n == 2)

{

y = ();

x = ();

s = x + y;

}

else throw NotImplementedError;

return s / n;

}

variable ave1 = average_n (3.0, 1); % ==> 3.0

variable ave2 = average_n (3.0, 5.0, 2); % ==> 4.0

Here, the last argument passed to average_n is an integer re�ecting the number of quantities to be

averaged. Although this example works �ne, its principal limitation is obvious: it only supports one

or two values. Extending it to three or more values by adding more else if constructs is rather

straightforward but hardly worth the e�ort. There must be a better way, and there is:

define average_n (n)

{

variable s, x;

s = 0;

loop (n)
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{

x = (); % get next value from stack

s += x;

}

return s / n;

}

The principal limitation of this approach is that one must still pass an integer that speci�es how

many values are to be averaged. Fortunately, a special variable exists that is local to every function

and contains the number of values that were passed to the function. That variable has the name

_NARGS and may be used as follows:

define average_n ()

{

variable x, s = 0;

if (_NARGS == 0)

usage ("ave = average_n (x, ...);");

loop (_NARGS)

{

x = ();

s += x;

}

return s / _NARGS;

}

Here, if no arguments are passed to the function, the usage function will generate a UsageError

exception along with a simple message indicating how to use the function.

8.7 Quali�ers

One way to pass optional information to a function is to do so using the variable arguments mech-

anism described in the previous section. However, a much more powerful mechanism is through the

use of quali�ers, which were added in version 2.1.

To illustrate the use of quali�ers, consider a graphics application that de�nes a function called plot

that plots a set of (x,y) values speci�ed as 1-d arrays:

plot(x,y);

Suppose that when called in the above manner, the application will plot the data as black points.

But instead of black points, one might want to plot the data using a red diamond as the plot symbol.

It would be silly to have a separate function such as plot_red_diamond for this purpose. A much

better way to achieve this functionality is through the use of quali�ers:

plot(x,y ; color="red", symbol="diamond");
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Here, a single semicolon is used to separate the argument-list proper (x,y) from the list of quali�ers.

In this case, the quali�ers are �color� and �symbol�. The order of the quali�ers in unimportant; the

function could just as well have been called with the symbol quali�er listed �rst.

Now consider the implementation of the plot function:

define plot (x, y)

{

variable color = qualifier ("color", "black");

variable symbol = qualifier ("symbol", "point");

variable symbol_size = qualifier ("size", 1.0);

.

.

}

Note that the quali�ers are not handled in the parameter list; rather they are handled in the function

body using the qualifier function, which is used to obtain the value of the quali�er. The second

argument to the qualifier function speci�es the default value to be used if the function was not

called with the speci�ed quali�er. Also note that the variable associated with the quali�er need not

have the same name as the quali�er.

A quali�er need not have a value� its mere presence may be used to enable or disable a feature or

trigger some action. For example,

plot (x, y; connect_points);

speci�es a quali�er called connect_points that indicates that a line should be drawn between the

data points. The presence of such a quali�er can be detected using the qualifier_exists function:

define plot (x,y)

{

.

.

variable connect_points = qualifier_exists ("connect_points");

.

.

}

Sometimes it is useful for a function to pass the quali�ers that it has received to other functions.

Suppose that the plot function calls draw_symbol to plot the speci�ed symbol at a particular

location and that it requires the symbol attibutes to be speci�ed using quali�ers. Then the plot

function might look like:

define plot (x, y)

{

variable color = qualifier ("color", "black");

variable symbol = qualifier ("symbol", "point");

variable symbol_size = qualifier ("size", 1.0);

.

.

_for i (0, length(x)-1, 1)
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draw_symbol (x[i],y[i]

;color=color, size=symbol_size, symbol=symbol);

.

.

}

The problem with this approach is that it does not scale well: the plot function has to be aware

of all the quali�ers that the draw_symbol function takes and explicitly pass them. In many cases

this can be quite cumbersome and error prone. Rather it is better to simply pass the quali�ers that

were passed to the plot function on to the draw_symbol function. This may be achieved using the

__qualifiers function. The __qualifiers function returns the list of quali�ers in the form of a

structure whose �eld names are the same as the quali�er names. In fact, the use of this function

can simplify the implementation of the plot function, which may be coded more simply as

define plot (x, y)

{

variable i;

_for i (0, length(x)-1, 1)

draw_symbol (x[i],y[i] ;; __qualifiers());

}

Note the syntax is slightly di�erent. The two semicolons indicate that the quali�ers are speci�ed

not as name-value pairs, but as a structure. Using a single semicolon would have created a quali�er

called __qualifiers, which is not what was desired.

As alluded to above an added bene�t of this approach is that the plot function does not need to

know nor care about the quali�ers supported by draw_symbol. When called as

plot (x, y; symbol="square", size=2.0, fill=0.8);

the fill quali�er would get passed to the draw_symbol function to specify the ��ll� value to be used

when creating the symbol.

8.8 Exit-Blocks

An exit-block is a set of statements that get executed when a functions returns. They are very useful

for cleaning up when a function returns via an explicit call to return from deep within a function.

An exit-block is created by using the EXIT_BLOCK keyword according to the syntax

EXIT_BLOCK { statement-list }

where statement-list represents the list of statements that comprise the exit-block. The following

example illustrates the use of an exit-block:

define simple_demo ()

{

variable n = 0;
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EXIT_BLOCK { message ("Exit block called."); }

forever

{

if (n == 10) return;

n++;

}

}

Here, the function contains an exit-block and a forever loop. The loop will terminate via the

return statement when n is 10. Before it returns, the exit-block will get executed.

A function can contain multiple exit-blocks, but only the last one encountered during execution will

actually get used. For example,

define simple_demo (n)

{

EXIT_BLOCK { return 1; }

if (n != 1)

{

EXIT_BLOCK { return 2; }

}

return;

}

If 1 is passed to this function, the �rst exit-block will get executed because the second one would

not have been encountered during the execution. However, if some other value is passed, the second

exit-block would get executed. This example also illustrates that it is possible to explicitly return

from an exit-block, but nested exit-blocks are illegal.

8.9 Handling Return Values from a Function

The most important rule to remember in calling a function is that if the function returns a value, the

caller must do something with it . While this might sound like a trivial statement it is the number

one issue that trips-up novice users of the language.

To elaborate on this point further, consider the fputs function, which writes a string to a �le de-

scriptor. This function can fail when, e.g., a disk is full, or the �le is located on a network share and

the network goes down, etc.

S-Lang supports two mechanisms that a function may use to report a failure: raising an exception,

returning a status code. The latter mechanism is used by the S-Lang fputs function. i.e., it returns

a value to indicate whether or not is was successful. Many users familiar with this function either

seem to forget this fact, or assume that the function will succeed and not bother handling the return

value. While some languages silently remove such values from the stack, S-Lang regards the stack

as a dynamic data structure that programs can utilize. As a result, the value will be left on the

S-Lang stack and can cause problems later on.
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There are a number of correct ways of �doing something� with the return value from a function. Of

course the recommended procedure is to use the return value as it was meant to be used. In the

case of fputs, the proper thing to do is to check the return value, e.g.,

if (-1 == fputs ("good luck", fp))

{

% Handle the error

}

Other acceptable ways to �do something� with the return value include assigning it to a dummy

variable,

dummy = fputs ("good luck", fp);

or simply �popping� it from the stack:

fputs ("good luck", fp); pop();

The latter mechanism can also be written as

() = fputs ("good luck", fp);

The last form is a special case of the multiple assignment statement , which was discussed earlier.

Since this form is simpler than assigning the value to a dummy variable or explicitly calling the pop

function, it is recommended over the other two mechanisms. Finally, this form has the redeeming

feature that it presents a visual reminder that the function is returning a value that is not being

used.
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Namespaces

By default, all global variables and functions are de�ned in the global or public namespace. In

addition to the global namespace, every compilation unit (e.g., a �le containing S-Lang code) has

a private, or anonymous namespace. The private namespace is used when one wants to restrict

the usage of one or more functions or variables to the compilation unit that de�nes them without

worrying about objects with the same names de�ned elsewhere.

Objects are declared as belonging to the private namespace using the private declaration keyword.

Similarly if a variable is declared using the public quali�er, it will be placed in the public namespace.

For example,

private variable i;

public variable j;

de�nes a variable called i in the private namespace and one called j in the public namespace.

The implements function may be used to create a new namespace of a speci�ed name and have it

associated with the compilation unit. Objects may be placed into this namespace space using the

static keyword, e.g.,

static variable X;

static define foo () {...}

For this reason, such a namespace will be called the static namespace associated with the compilation

unit. Such objects may be accessed from outside the local compilation unit using the namespace

operator -> in conjunction with the name of the namespace.

Since it is possible for three namespaces (private, static, public) to be associated with a compilation

unit, it is important to understand how names are resolved by the parser. During the compilation

stage, symbols are looked up according to the current scope. If in a function, the local variables of

the function are searched �rst. Then the search proceeds with symbols in the private namespace,

followed by those in the static namespace associated with the compilation unit (if any), and �nally

with the public namespace. If after searching the public namespace the symbol has not been resolved,

an UndefinedNameError exception will result.

In addition to using the implements function, there are other ways to associate a namespace with
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a compilation unit. One is via the optional namespace argument of the evalfile function. For

example,

() = evalfile ("foo.sl", "bar");

will cause foo.sl to be loaded and associated with a namespace called bar. Then any static symbols

of foo.sl may accessed using the bar-> pre�x.

It is important to note that if a static namespace has been associated with the compilation unit,

then any symbols in that unit declared without an namespace quali�er will be placed in the static

namespace. Otherwise such symbols will be placed in the public namespace, and any symbols

declared as static will be placed in the private namespace.

To illustrate these concepts, consider the following example:

% foo.sl

variable X = 1;

static variable Y;

private variable Z;

public define set_Y (y) { Y = y; }

static define set_z (z) { Z = z; }

If foo.sl is loaded via

() = evalfile ("foo.sl");

then no static namespace will be associated with it. As a result, X will be placed in the public

namespace since it was declared with no namespace quali�er. Also Y and set_z will be placed in

the private namespace since no static namespace has been associated with the �le. In this scenario

there will be no way to get at the Z variable from outside of foo.sl since both it and the function

that accesses it (set_z) are placed in the private namespace.

On the other hand, suppose that the �le is loaded using a namespace argument:

() = evalfile ("foo.sl", "foo");

In this case X, Y, and set_z will be placed in the foo namespace. These objects may be accessed

from outside foo.sl using the foo-> pre�x, e.g.,

foo->set_z (3.0);

if (foo->X == 2) foo->Y = 1;

Because a �le may be loaded with or without a namespace attached to it, it is a good idea to avoid

using the static quali�er. To see this, consider again the above example but this time without the

use of the static quali�er:

% foo.sl

variable X = 1;

variable Y;

private variable Z;

public define set_Y (y) { Y = y; }

define set_z (z) { Z = z; }
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When loaded without a namespace argument, the variable Z will remain in the private namespace,

but the set_z function will be put in the public namespace. Previously set_z was put in the private

namespace making both it and Z inaccessible.
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Arrays

An array is a container object that can contain many values of one data type. Arrays are very useful

objects and are indispensable for certain types of programming. The purpose of this chapter is to

describe how arrays are de�ned and used in the S-Lang language.

10.1 Creating Arrays

The S-Lang language supports multi-dimensional arrays of all data types. Since the Array_Type is

a data type, one can even have arrays of arrays. To create a multi-dimensional array of SomeType

and assign to some variable, use:

a = SomeType [dim0, dim1, ..., dimN];

Here dim0 , dim1 , ... dimN specify the size of the individual dimensions of the array. The current

implementation permits arrays to contain as many as 7 dimensions. When a numeric array is created,

all its elements are initialized to zero. The initialization of other array types depend upon the data

type, e.g., the elements in String_Type and Struct_Type arrays are initialized to NULL.

As a concrete example, consider

a = Integer_Type [10];

which creates a one-dimensional array of 10 integers and assigns it to a. Similarly,

b = Double_Type [10, 3];

creates a 30 element array of double precision numbers arranged in 10 rows and 3 columns, and

assigns it to b.

10.1.1 Range Arrays

There is a more convenient syntax for creating and initializing 1-d arrays. For example, to create

an array of ten integers whose elements run from 1 through 10, one may simply use:
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a = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10];

Similarly,

b = [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0];

speci�es an array of ten doubles.

An even more compact way of specifying a numeric array is to use a range-array . For example,

a = [0:9];

speci�es an array of 10 integers whose elements range from 0 through 9. The syntax for the most

general form of range array is given by

[first-value : last-value : increment]

where the increment is optional and defaults to 1. This creates an array whose �rst element is

�rst-value and whose successive values di�er by increment . last-value sets an upper limit upon the

last value of the array as described below.

If the range array [a:b:c] is integer valued, then the interval speci�ed by a and b is closed. That

is, the kth element of the array x_k is given by x_k=a+kc and satis�es a<=x_k<=b. Hence, the

number of elements in an integer range array is given by the expression 1 + (b-a)/c.

The situation is somewhat more complicated for �oating point range arrays. The interval speci�ed

by a �oating point range array [a:b:c] is semi-open such that b is not contained in the interval. In

particular, the kth element of [a:b:c] is given by x_k=a+kc such that a<=x_k<b when c>=0,

and b<x_k<=a otherwise. The number of elements in the array is one greater than the largest k

that satis�es the open interval constraint.

In contrast, a range-array expressed in the form [a:b:#n] represents an array of exactly n elements

running from a to b inclusive. It is equivalent to a+[0:n-1]*(b-a)/(n-1).

Here are a few examples that illustrate the above comments:

[1:5:1] ==> [1,2,3,4,5]

[1.0:5.0:1.0] ==> [1.0, 2.0, 3.0, 4.0]

[5:1:-1] ==> [5,4,3,2,1]

[5.0:1.0:-1.0] ==> [5.0, 4.0, 3.0, 2.0];

[1:1] ==> [1]

[1.0:1.0] ==> []

[1.0:1.0001] ==> [1.0]

[1:-3] ==> []

[0:1:#5] ==> [0.0, 0.25, 0.50, 0.75, 1.0]

[0:-1:#3] ==> [0.0, -0.5, -1.0]

Currently Int_Type is the only integer type supported by range arrays� arbitrary integer types

will be supported in a future version. This means that [1h:5h] will not produce an array of

Short_Type, rather it will produce an Int_Type array. However, [1h,2h,3h,4h,5h] will produce

an array of Short_Type integers.
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10.1.2 Creating arrays via the dereference operator

Another way to create an array is to apply the dereference operator @ to the DataType_Type literal

Array_Type. The actual syntax for this operation resembles a function call

variable a = @Array_Type (data-type , integer-array );

where data-type is of type DataType_Type and integer-array is a 1-d array of integers that specify

the size of each dimension. For example,

variable a = @Array_Type (Double_Type, [10, 20]);

will create a 10 by 20 array of doubles and assign it to a. This method of creating arrays derives

its power from the fact that it is more �exible than the methods discussed in this section. It is

particularly useful for creating arrays during run-time in situations where the data-type can vary.

10.2 Reshaping Arrays

It is sometimes useful to change the `shape' of an array using the reshape function. For example,

a 1-d 10 element array may be reshaped into a 2-d array consisting of 5 rows and 2 columns. The

only restriction on the operation is that the arrays must be commensurate. The reshape function

follows the syntax

reshape (array-name , integer-array );

where array-name speci�es the array to be reshaped to the dimensions given by integer-array,

a 1-dimensional array of integers. It is important to note that this does not create a new array, it

simply reshapes the existing array. Thus,

variable a = Double_Type [100];

reshape (a, [10, 10]);

turns a into a 10 by 10 array, as well as any other variables attached to the array.

The _reshape function works like reshape except that it creates a new array instead of changing

the shape of an existing array:

new_a = _reshape (a, [10,10]);

10.3 Simple Array Indexing

An individual element of an array may be referred to by its index . For example, a[0] speci�es the

zeroth element of the one dimensional array a, and b[3,2] speci�es the element in the third row

and second column of the two dimensional array b. As in C, array indices are numbered from 0.

Thus if a is a one-dimensional array of ten integers, the last element of the array is given by a[9].

Using a[10] would result in an IndexError exception.
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A negative index may be used to index from the end of the array, with a[-1] referring to the last

element of a. Similarly, a[-2] refers to the next to the last element, and so on.

One may use the indexed value like any other variable. For example, to set the third element of an

integer array to 6, use

a[2] = 6;

Similarly, that element may be used in an expression, such as

y = a[2] + 7;

Unlike other S-Lang variables which inherit a type upon assignment, array elements already have a

type and any attempt to assign a value with an incompatible type will result in a TypeMismatchError

exception. For example, it is illegal to assign a string value to an integer array.

One may use any integer expression to index an array. A simple example that computes the sum of

the elements of a 10 element 1-d array is

variable i, s;

s = 0;

for (i = 0; i < 10; i++) s += a[i];

(In practice, do not carry out sums this way� use the sum function instead, which is much simpler

and faster, i.e., s=sum(a)).

10.4 Indexing Multiple Elements with Ranges

Unlike many other languages, S-Lang permits arrays to be indexed by other integer arrays. Suppose

that a is a 1-d array of 10 doubles. Now consider:

i = [6:8];

b = a[i];

Here, i is a 1-dimensional range array of three integers with i[0] equal to 6, i[1] equal to 7, and

i[2] equal to 8. The statement b = a[i]; will create a 1-d array of three doubles and assign it to

b. The zeroth element of b, b[0] will be set to the sixth element of a, or a[6], and so on. In fact,

these two simple statements are equivalent to

b = Double_Type [3];

b[0] = a[6];

b[1] = a[7];

b[2] = a[8];

except that using an array of indices is not only much more convenient, but executes much faster.

More generally, one may use an index array to specify which elements are to participate in a calcu-

lation. For example, consider
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a = Double_Type [1000];

i = [0:499];

j = [500:999];

a[i] = -1.0;

a[j] = 1.0;

This creates an array of 1000 doubles and sets the �rst 500 elements to -1.0 and the last 500 to

1.0. Actually, one may do away with the i and j variables altogether and use

a = Double_Type [1000];

a[[0:499]] = -1.0;

a[[500:999]] = 1.0;

It is important to note that the syntax requires the use of the double square brackets, and in

particular that a[[0:499]] is not the same as a[0:499]. In fact, the latter will generate a syntax

error.

Index-arrays are not contrained to be one-dimensional arrays. Suppose that I represents a multidi-

mensional index array, and that A is the array to be indexed. Then what does A[I] represent? Its

value will be an array of the same type as A, but with the dimensionality of I . For example,

a = 1.0*[1:10];

i = _reshape ([4,5,6,7,8,9], [2,3]);

de�nes a to be a 10 element array of doubles, and i to be 2x3 array of integers. Then a[i] will be

a 2x3 array of doubles with elements:

a[4] a[5] a[6]

a[7] a[8] a[9]

Often, it is convenient to use a �rubber� range to specify indices. For example, a[[500:]] speci�es

all elements of a whose index is greater than or equal to 500. Similarly, a[[:499]] speci�es the

�rst 500 elements of a. Finally, a[[:]] speci�es all the elements of a. The latter form may also be

written as a[*].

One should be careful when using index arrays with negative elements. As pointed out above, a

negative index is used to index from the end of the array. That is, a[-1] refers to the last element

of a. How should a[[[0:-1]] be interpreted?

In version 1 of the interpreter, when used in an array indexing context, a construct such as [0:-1]

was taken to mean from the �rst element through the last. While this might seem like a convenient

shorthand, in retrospect it was a bad idea. For this reason, the meaning of a ranges over negative

valued indices was changed in version 2 of the interpreter as follows: First the index-range gets

expanded to an array of indices according to the rules for range arrays described above. Then if any

of the resulting indices are negative, they are interpreted as indices from the end of the array. For

example, if a is an array of 10 elements, then a[[-2:3]] is �rst expanded to a[[-2,-1,0,1,2,3]],

and then to the 6 element array

[ a[8], a[9], a[0], a[1], a[2], a[3] ]
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So, what does a[[0:-1]] represent in the new interpretation? Since [0:-1] expands to an empty

array, a[[0:-1]] will also produce an empty array.

Indexing of multidimensional arrays using ranges works similarly. Suppose a is a 100 by 100 array of

doubles. Then the expression a[0, *] speci�es all elements in the zeroth row. Similarly, a[*, 7]

speci�es all elements in the seventh column. Finally, a[[3:5],[6:12]] speci�es the 3 by 7 region

consisting of rows 3, 4, and 5, and columns 6 through 12 of a.

Before leaving this section, a few examples are presented to illustrate some of these points.

The �trace� of a matrix is an important concept that occurs frequently in linear algebra. The trace

of a 2d matrix is given by the sum of its diagonal elements. Consider the creation of a function that

computes the trace of such a matrix.

The most straightforward implementation of such a function uses an explicit loop:

define array_trace (a, n)

{

variable s = 0, i;

for (i = 0; i < n; i++) s += a[i, i];

return s;

}

Better yet is to recognize that the diagonal elements of an n by n array are given by an index array

I with elements 0, n+1, 2*n+2, ..., n*n-1, or more precisely as

[0:n*n-1:n+1]

Hence the above may be written more simply as

define array_trace (a, n)

{

return sum (a[[0:n*n-1:n+1]]);

}

The following example creates a 10 by 10 integer array, sets its diagonal elements to 5, and then

computes the trace of the array:

a = Integer_Type [10, 10];

a[[0:99:11]] = 5;

the_trace = array_trace(a, 10);

In the previous examples, the size of the array was passed as an additional argument. This is

unnecessary because the size may be obtained from array itself by using the array_shape function.

For example, the following function may be used to obtain the indices of the diagonal element of an

array:

define diag_indices (a)

{

variable dims = array_shape (a);

if (length (dims) != 2)

throw InvalidParmError, "Expecting a 2d array";
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if (dims[0] != dims[1])

throw InvalidParmError, "Expecting a square array";

variable n = dims[0];

return [0:n*(n-1):n+1];

}

Using this function, the trace function may be written more simply as

define array_trace (a)

{

return sum (a[diag_indices(a)]);

}

Another example of this technique is a function that creates an n by n unit matrix:

define unit_matrix (n)

{

variable a = Int_Type[n, n];

a[diag_indices(a)] = 1;

return a;

}

10.5 Arrays and Variables

When an array is created and assigned to a variable, the interpreter allocates the proper amount

of space for the array, initializes it, and then assigns to the variable a reference to the array. So, a

variable that represents an array has a value that is really a reference to the array. This has several

consequences, most good and some bad. It is believed that the advantages of this representation

outweigh the disadvantages. First, we shall look at the positive aspects.

When a variable is passed to a function, it is always the value of the variable that gets passed. Since

the value of a variable representing an array is a reference, a reference to the array gets passed. One

major advantage of this is rather obvious: it is a fast and e�cient way to pass the array. This also

has another consequence that is illustrated by the function

define init_array (a)

{

variable i;

variable n = length(a);

_for i (0, n-1, 1)

a[i] = some_function (i);

}

where some_function is a function that generates a scalar value to initialize the ith element. This

function can be used in the following way:

variable X = Double_Type [100000];

init_array (X);
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Since the array is passed to the function by reference, there is no need to make a separate copy of the

100000 element array. As pointed out above, this saves both execution time and memory. The other

salient feature to note is that any changes made to the elements of the array within the function will

be manifested in the array outside the function. Of course, in this case this is a desirable side-e�ect.

To see the downside of this representation, consider:

a = Double_Type [10];

b = a;

a[0] = 7;

What will be the value of b[0]? Since the value of a is really a reference to the array of ten doubles,

and that reference was assigned to b, b also refers to the same array. Thus any changes made to the

elements of a, will also be made implicitly to b.

This begs the question: If the assignment of a variable attached to an an array to another variable

results in the assignment of the same array, then how does one make separate copies of the array?

There are several answers including using an index array, e.g., b = a[*]; however, the most natural

method is to use the dereference operator:

a = Double_Type [10];

b = @a;

a[0] = 7;

In this example, a separate copy of a will be created and assigned to b. It is very important to note

that S-Lang never implicitly dereferences an object. So, one must explicitly use the dereference

operator. This means that the elements of a dereferenced array are not themselves dereferenced.

For example, consider dereferencing an array of arrays, e.g.,

a = Array_Type [2];

a[0] = Double_Type [10];

a[1] = Double_Type [10];

b = @a;

In this example, b[0] will be a reference to the array that a[0] references because a[0] was not

explicitly dereferenced.

10.6 Using Arrays in Computations

Many functions and operations work transparently with arrays. For example, if a and b are arrays,

then the sum a + b is an array whose elements are formed from the sum of the corresponding

elements of a and b. A similar statement holds for all other binary and unary operations.

Let's consider a simple example. Suppose, that we wish to solve a set of n quadratic equations whose

coe�cients are given by the 1-d arrays a, b, and c. In general, the solution of a quadratic equation

will be two complex numbers. For simplicity, suppose that all we really want is to know what subset

of the coe�cients, a, b, c, correspond to real-valued solutions. In terms of for loops, we can write:

index_array = Char_Type [n];
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_for i (0, n-1, 1)

{

d = b[i]^2 - 4 * a[i] * c[i];

index_array [i] = (d >= 0.0);

}

In this example, the array index_array will contain a non-zero value if the corresponding set of

coe�cients has a real-valued solution. This code may be written much more compactly and with

more clarity as follows:

index_array = ((b^2 - 4 * a * c) >= 0.0);

Moreover, it executes about 20 times faster than the version using an explicit loop.

S-Lang has a powerful built-in function called where. This function takes an array of boolean

values and returns an array of indices that correspond to where the elements of the input array are

non-zero. The utility of this simple operation cannot be overstated. For example, suppose a is a 1-d

array of n doubles, and it is desired to set all elements of the array whose value is less than zero to

zero. One way is to use a for loop:

_for i (0, n-1, 1)

if (a[i] < 0.0) a[i] = 0.0;

If n is a large number, this statement can take some time to execute. The optimal way to achieve

the same result is to use the where function:

a[where (a < 0.0)] = 0;

Here, the expression (a < 0.0) returns a boolean array whose dimensions are the same size as a

but whose elements are either 1 or 0, according to whether or not the corresponding element of a is

less than zero. This array of zeros and ones is then passed to the where function, which returns a

1-d integer array of indices that indicate where the elements of a are less than zero. Finally, those

elements of a are set to zero.

Consider once more the example involving the set of n quadratic equations presented above. Suppose

that we wish to get rid of the coe�cients of the previous example that generated non-real solutions.

Using an explicit for loop requires code such as:

nn = 0;

_for i (0, n-1, 1)

if (index_array [i]) nn++;

tmp_a = Double_Type [nn];

tmp_b = Double_Type [nn];

tmp_c = Double_Type [nn];

j = 0;

_for i (0, n-1, 1)

{

if (index_array [i])

{
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tmp_a [j] = a[i];

tmp_b [j] = b[i];

tmp_c [j] = c[i];

j++;

}

}

a = tmp_a;

b = tmp_b;

c = tmp_c;

Not only is this a lot of code, making it hard to digest, but it is also clumsy and error-prone. Using

the where function, this task is trivial and executes in a fraction of the time:

i = where (index_array != 0);

a = a[i];

b = b[i];

c = c[i];

Most of the examples up till now assumed that the dimensions of the array were known. Although

the intrinsic function length may be used to get the total number of elements of an array, it cannot

be used to get the individual dimensions of a multi-dimensional array. The array_shape function

may be used to determine the dimensionality of an array. It may be used to determine the number

of rows of an array as follows:

define num_rows (a)

{

return array_shape (a)[0];

}

The number of columns may be obtained in a similar manner:

define num_cols (a)

{

variable dims = array_shape (a);

if (length(dims) > 1) return dims[1];

return 1;

}

The array_shape function may also be used to create an array that has the same number of

dimensions as another array:

define make_int_array (a)

{

return @Array_Type (Int_Type, array_shape (a));

}

Finally, the array_info function may be used to get additional information about an array, such as

its data type and size.
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10.7 Arrays of Arrays: A Cautionary Note

Sometimes it is desirable to create an array of arrays. For example,

a = Array_Type[3];

a[0] = [1:10];

a[1] = [1:100];

a[2] = [1:1000];

will produce an array of the 3 arrays [1:10], [1:100], and [1:1000]. Index arrays may be used

to access elements of an array of arrays: a[[1,2]] will produce an array of arrays that consists of the

elements a[1] and a[2]. However, it is important to note that setting the elements of an array of

arrays via an index array does not work as one might naively expect. Consider the following:

b = Array_Type[3];

b[*] = a[[2,1,0]];

where a is the array of arrays given in the previous example. The reader might expect

b to have elements b[0]=a[2], b[1]=a[1], and b[2]=a[0], and be surprised to learn that

b[0]=b[1]=b[2]=a[[2,1,0]]. The reason for this is that, by de�nition, b is an array of arrays, and

even though a[[2,1,0]] is an array of arrays, it is �rst and foremost an array, and it is that array

that is assigned to the elements of b.
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Chapter 11

Associative Arrays

An associative array di�ers from an ordinary array in the sense that its size is not �xed and that it

is indexed by a string, called the key . For example, consider:

A = Assoc_Type [Int_Type];

A["alpha"] = 1;

A["beta"] = 2;

A["gamma"] = 3;

Here, A has been assigned to an associative array of integers (Int_Type) and then three keys were

been added to the array.

As the example suggests, an associative array may be created using one of the following forms:

Assoc_Type [type ] Assoc_Type [type , default-value ] Assoc_Type []

The last form returns an un-typed associative array capable of storing values of any type.

The form involving a default-value is useful for associating a default value with non-existent array

members. This feature is explained in more detail below.

There are several functions that are specially designed to work with associative arrays. These include:

• assoc_get_keys, which returns an ordinary array of strings containing the keys of the array.

• assoc_get_values, which returns an ordinary array of the values of the associative array. If

the associative array is un-typed, then an array of Any_Type objects will be returned.

• assoc_key_exists, which can be used to determine whether or not a key exists in the array.

• assoc_delete_key, which may be used to remove a key (and its value) from the array.

To illustrate the use of an associative array, consider the problem of counting the number of repeated

occurrences of words in a list. Let the word list be represented as an array of strings given by

word_list. The number of occurrences of each word may be stored in an associative array as

follows:
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a = Assoc_Type [Int_Type];

foreach word (word_list)

{

if (0 == assoc_key_exists (a, word))

a[word] = 0;

a[word]++; % same as a[word] = a[word] + 1;

}

Note that assoc_key_exists was necessary to determine whether or not a word was already added

to the array in order to properly initialize it. However, by creating the associative array with a

default value of 0, the above code may be simpli�ed to

variable a, word;

a = Assoc_Type [Int_Type, 0];

foreach word (word_list)

a[word]++;

Associative arrays are extremely useful and have may other applications. Whenever there is a one

to one mapping between a string and some object, one should always consider using an associative

array to represent the mapping. To illustrate this point, consider the following code fragment:

define call_function (name, arg)

{

if (name == "foo") return foo (arg);

if (name == "bar") return bar (arg);

.

.

if (name == "baz") return baz (arg);

throw InvalidParmError;

}

This represents a mapping between names and functions. Such a mapping may be written in terms

of an associative array as follows:

private define invalid_fun (arg) { throw InvalidParmError; }

Fun_Map = Assoc_Type[Ref_Type, &invalid_fun];

define add_function (name, fun)

{

Fun_Map[name] = fun;

}

add_function ("foo", &foo);

add_function ("bar", &bar);

.

.

add_function ("baz", &baz);

define call_function (name, arg)

{

return (@Fun_Map[name])(arg);

}
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The most redeeming feature of the version involving the series of if statements is that it is easy

to understand. However, the version involving the associative array has two signi�cant advantages

over the former. Namely, the function lookup will be much faster with a time that is independent

of the item being searched, and it is extensible in the sense that additional functions may be added

at run-time, e.g.,

add_function ("bing", &bing);
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Chapter 12

Structures and User-De�ned Types

A structure is a heterogeneous container object, i.e., it is an object with elements whose values do

not have to be of the same data type. The elements or �elds of a structure are named, and one

accesses a particular �eld of the structure via the �eld name. This should be contrasted with an

array whose values are of the same type, and whose elements are accessed via array indices.

A user-de�ned data type is a structure with a �xed set of �elds de�ned by the user.

12.1 De�ning a Structure

The struct keyword is used to de�ne a structure. The syntax for this operation is:

struct {field-name-1 , field-name-2 , ... field-name-N };

This creates and returns a structure with N �elds whose names are speci�ed by �eld-name-1 , �eld-

name-2 , ..., �eld-name-N . When a structure is created, the values of its �elds are initialized to

NULL.

For example,

variable t = struct { city_name, population, next };

creates a structure with three �elds and assigns it to the variable t.

Alternatively, a structure may be created by dereferencing Struct_Type. Using this technique, the

above structure may be created using one of the two forms:

t = @Struct_Type ("city_name", "population", "next");

t = @Struct_Type (["city_name", "population", "next"]);

This approach is useful when creating structures dynamically where one does not know the name of

the �elds until run-time.

Like arrays, structures are passed around by reference. Thus, in the above example, the value of t

is a reference to the structure. This means that after execution of

81



82 Chapter 12. Structures and User-De�ned Types

u = t;

both t and u refer to the same underlying structure, since only the reference was copied by the

assignment. To actually create a new copy of the structure, use the dereference operator, e.g.,

variable u = @t;

It create new structure whose �eld names are identical to the old and copies the �eld values to the

new structure. If any of the values are objects that are passed by reference, then only the references

will be copied. In other words,

t = struct{a};

t.a = [1:10];

u = @t;

will produce a structure u that references the same array as t.

12.2 Accessing the Fields of a Structure

The dot (.) operator is used to specify the particular �eld of structure. If s is a structure and

field_name is a �eld of the structure, then s.field_name speci�es that �eld of s. This speci�cation

can be used in expressions just like ordinary variables. Again, consider

t = struct { city_name, population, next };

described in the last section. Then,

t.city_name = "New York";

t.population = 13000000;

if (t.population > 200) t = t.next;

are all valid statements involving the �elds of t.

12.3 Linked Lists

One of the most important uses of structures is the creation of dynamic data structures such as

linked-lists. A linked-list is simply a chain of structures that are linked together such that one

structure in the chain is the value of a �eld of the previous structure in the chain. To be concrete,

consider the structure discussed earlier:

t = struct { city_name, population, next };

and suppose that it is desired to create a linked-list of such objects to store population data. The

purpose of the next �eld is to provide the link to the next structure in the chain. Suppose that

there exists a function, read_next_city, that reads city names and populations from a �le. Then

the list may be created using:
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define create_population_list ()

{

variable city_name, population, list_root, list_tail;

variable next;

list_root = NULL;

while (read_next_city (&city_name, &population))

{

next = struct {city_name, population, next };

next.city_name = city_name;

next.population = population;

next.next = NULL;

if (list_root == NULL)

list_root = next;

else

list_tail.next = next;

list_tail = next;

}

return list_root;

}

In this function, the variables list_root and list_tail represent the beginning and end of the

list, respectively. As long as read_next_city returns a non-zero value, a new structure is created,

initialized, and then appended to the list via the next �eld of the list_tail structure. On the �rst

time through the loop, the list is created via the assignment to the list_root variable.

This function may be used as follows:

Population_List = create_population_list ();

if (Population_List == NULL)

throw RunTimeError, "List is empty";

Other functions may be created that manipulate the list. Here is one that �nds the city with the

largest population:

define get_largest_city (list)

{

variable largest;

largest = list;

while (list != NULL)

{

if (list.population > largest.population)

largest = list;

list = list.next;

}

return largest.city_name;

}
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vmessage ("%s is the largest city in the list",

get_largest_city (Population_List));

The get_largest_city is a typical example of how one traverses a linear linked-list by starting at

the head of the list and successively moves to the next element of the list via the next �eld.

In the previous example, a while loop was used to traverse the linked list. It is also possible to use

a foreach loop for this:

define get_largest_city (list)

{

variable largest, elem;

largest = list;

foreach elem (list)

{

if (elem.population > largest.population)

largest = elem;

}

return largest.city_name;

}

Here a foreach loop has been used to walk the list via its next �eld. If the �eld name linking

the elements was not called next, then it would have been necessary to use the using form of the

foreach statement. For example, if the �eld name implementing the linked list was next_item,

then

foreach item (list) using ("next_item")

{

.

.

}

would have been used. In other words, unless otherwise indicated via the using clause, foreach

walks the list using a �eld named next by default.

Now consider a function that sorts the list according to population. To illustrate the technique, a

bubble-sort will be used, not because it is e�cient (it is not), but because it is simple, intuitive, and

provides another example of structure manipulation:

define sort_population_list (list)

{

variable changed;

variable node, next_node, last_node;

do

{

changed = 0;

node = list;

next_node = node.next;

last_node = NULL;
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while (next_node != NULL)

{

if (node.population < next_node.population)

{

% swap node and next_node

node.next = next_node.next;

next_node.next = node;

if (last_node != NULL)

last_node.next = next_node;

if (list == node) list = next_node;

node = next_node;

next_node = node.next;

changed++;

}

last_node = node;

node = next_node;

next_node = next_node.next;

}

}

while (changed);

return list;

}

Note the test for equality between list and node, i.e.,

if (list == node) list = next_node;

It is important to appreciate the fact that the values of these variables are references to structures,

and that the comparison only compares the references and not the actual structures they reference.

If it were not for this, the algorithm would fail.

12.4 De�ning New Types

A user-de�ned data type may be de�ned using the typedef keyword. In the current implementation,

a user-de�ned data type is essentially a structure with a user-de�ned set of �elds. For example, in

the previous section a structure was used to represent a city/population pair. We can de�ne a data

type called Population_Type to represent the same information:

typedef struct

{

city_name,

population

} Population_Type;

This data type can be used like all other data types. For example, an array of Population_Type

types can be created,



86 Chapter 12. Structures and User-De�ned Types

variable a = Population_Type[10];

and `populated' via expressions such as

a[0].city_name = "Boston";

a[0].population = 2500000;

The new type Population_Type may also be used with the typeof function:

if (Population_Type == typeof (a))

city = a.city_name;

The dereference @ may be used to create an instance of the new type:

a = @Population_Type;

a.city_name = "Calcutta";

a.population = 13000000;

Another feature that user-de�ned types possess is that the action of the binary and unary operations

may be de�ned for them. This idea is discussed in more detail below.

12.5 Operator Overloading

The binary and unary operators may be extended to user-de�ned types. To illustrate how this

works, consider a data type that represents a vector in 3-space:

typedef struct { x, y, z } Vector_Type;

and a function that instantiates such an object:

define vector_new (x, y, z)

{

variable v = @Vector_Type;

v.x = double(x); v.y = double(y); v.z = double(z);

return v;

}

This function may be used to de�ne a function that adds two vectors together:

define vector_add (v1, v2)

{

return vector_new (v1.x+v2.x, v1.y+v2.y, v1.z+v2.z);

}

Using these functions, three vectors representing the points (2,3,4), (6,2,1), and (-3,1,-6) may

be created using

V1 = vector_new (2,3,4);

V2 = vector_new (6,2,1);

V3 = vector_new (-3,1,-6);
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and then added together via

V4 = vector_add (V1, vector_add (V2, V3));

The problem with the last statement is that it is not a very natural way to express the addition of

three vectors. It would be far better to extend the action of the binary + operator to the Vector_Type

objects and then write the above sum more simply as

V4 = V1 + V2 + V3;

The __add_binary function de�nes the result of a binary operation between two data types:

__add_binary (op , result-type , funct , typeA ,typeB );

Here, op is a string representing any one of the binary operators ("+", "-", "*", "/", "==",...), and

funct is reference to a function that carries out the binary operation between objects of types typeA

and typeB to produce an object of type result-type.

This function may be used to extend the + operator to Vector_Type objects:

__add_binary ("+", Vector_Type, &vector_add, Vector_Type, Vector_Type);

Similarly the subtraction and equality operators may be extended to Vector_Type via

define vector_minus (v1, v2)

{

return vector_new (v1.x-v2.x, v1.y-v2.y, v1.z-v2.z);

}

__add_binary ("-", Vector_Type, &vector_minus, Vector_Type, Vector_Type);

define vector_eqs (v1, v2)

{

return (v1.x==v2.x) and (v1.y==v2.y) and (v1.z==v2.z);

}

__add_binary ("==", Char_Type, &vector_eqs, Vector_Type, Vector_Type);

permitting a statement such as

if (V2 != V1) V3 = V2 - V1;

The - operator is also an unary operator that is customarily used to change the sign of an object.

Unary operations may be extended to Vector_Type objects using the __add_unary function:

define vector_chs (v)

{

return vector_new (-v.x, -v.y, -v.z);

}

__add_unary ("-", Vector_Type, &vector_chs, Vector_Type);
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A trivial example of the use of the unary minus is V4 = -V2.

It is interesting to consider the extension of the multiplication operator * to Vector_Type. A vector

may be multiplied by a scalar to produce another vector. This can happen in two ways as re�ected

by the following functions:

define vector_scalar_mul (v, a)

{

return vector_new (a*v.x, a*v.y, a*v.z);

}

define scalar_vector_mul (a, v)

{

return vector_new (a*v.x, a*v.y, a*v.z);

}

Here a represents the scalar, which can be any object that may be multiplied by a Double_Type,

e.g., Int_Type, Float_Type, etc. Instead of using multiple statements involving __add_binary

to de�ne the action of Int_Type+Vector_Type, Float_Type+Vector_Type, etc, a single statement

using Any_Type to represent a �wildcard� type may be used:

__add_binary ("*", Vector_Type, &vector_scalar_mul, Vector_Type, Any_Type);

__add_binary ("*", Vector_Type, &scalar_vector_mul, Any_Type, Vector_Type);

There are a couple of natural possibilities for Vector_Type*Vector_Type: The cross-product de�ned

by

define crossprod (v1, v2)

{

return vector_new (v1.y*v2.z-v1.z*v2.y,

v1.z*v2.x-v1.x*v2.z,

v1.x*v2.y-v1.y*v2.x);

}

and the dot-product:

define dotprod (v1, v2)

{

return v1.x*v2.x + v1.y*v2.y + v1.z*v2.z;

}

The binary * operator between two vector types may be de�ned to be just one of these functions�

it cannot be extended to both. If the dot-product is chosen then one would use

__add_binary ("*", Double_Type, &dotprod, Vector_Type_Type, Vector_Type);

Just because it is possible to de�ne the action of a binary or unary operator on an user-de�ned

type, it is not always wise to do so. A useful rule of thumb is to ask whether de�ning a particular

operation leads to more readable and maintainable code. For example, simply looking at

c = a + b;
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in isolation one can easily overlook the fact that a function such as vector_add may be getting

executed. Moreover, in cases where the action is ambiguous such as Vector_Type*Vector_Type it

may not be clear what

c = a*b;

means unless one knows exactly what choice was made when extending the * operator to the types.

For this reason it may be wise to leave Vector_Type*Vector_Type unde�ned and use �old-fashioned�

function calls such as

c = dotprod (a, b);

d = crossprod (a, b);

to avoid the ambiguity altogether.

Finally, the __add_string function may be used to de�ne the string representation of an object.

Examples involving the string representation include:

message ("The value is " + string (V));

vmessage ("The result of %S+%S is %S", V1, V1, V1+V2);

str = "The value of V is $V"$;

For the Vector_Type one might want to use the string represention generated by

define vector_string (v)

{

return sprintf ("(%S,%S,%S)", v.x, v.y, v.z);

}

__add_string (Vector_Type, &vector_string);
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Chapter 13

Lists

Sometimes it is desirable to utilize an object that has many of the properties of an array, but can

also easily grow or shrink upon demand. The List_Type object has such properties.

An empty list may be created either by the list_new function or more simply using curly braces,

e.g.,

list = {};

More generally a list of objects may be created by simply enclosing them in braces. For example,

list = { "hello", 7, 3.14, {&sin, &cos}}

speci�es a list of 4 elements, where the last element is also a list. The number of items in a list may

be obtained using the length function. For the above list, length(list) will return 4.

One may examine the contents of the list using an array index notation. For the above example,

list[0] refers to the zeroth element of the list ("hello" in this case). Similarly,

list[1] = [1,2,3];

changes the �rst element of the list (7) to the array [1,2,3]. Also as the case for arrays one may

index from the end of the list using negative indices, e.g., list[-1] refers to the last element of the

list.

The functions list_insert and list_append may be used to add items to a list. In particular,

list_insert(list,obj,nth) will insert the object obj into the list at the nth position. Similarly,

list_append(list,obj,nth) will insert the object obj into the list right after nth position. If

list = { "hello", 7, 3.14, {&sin, &cos}}

then

list_insert (list, 0, "hi");

list_append (list, 0, "there");

list_insert (list, -1, "before");

list_append (list, -1, "after");
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will result in the list

{"hi", "there", "hello", 7, 3.14, "before", {&sin,&cos}, "after"}

One might be tempted to use

list = {"hi", list};

to insert "hi" at the head of the list. However, this simply creates a new list of two items: hi and

the original list.

Items may be removed from a list via the list_delete function, which deletes the item from the

speci�ed position and shrinks the list. In the context of the above example,

list_delete (list, 2);

will shrink the list to

{"hi", "there", 7, 3.14, "before", {&sin,&cos}, "after"}

Another way of removing items from the list is to use the list_pop function. The main di�erence

between it and list_delete is that list_pop returns the deleted item. For example,

item = list_pop (list, -2);

would reduce the list to

{"hi", "there", 7, 3.14, "before", "after"}

and assign {&sin,&cos} to item. If the position parameter to list_pop is left unspeci�ed, then the

position will default to the zeroth, i.e., list_pop(list) is equaivalent to list_pop(list,0).

To copy a list, use the dereference operator @:

new_list = @list;

Keep in mind that this does not perform a so-called deep copy. If any of the elements of the list are

objects that are assigned by reference, only the references will be copied.

The list_reverse function may be used to reverse the elements of a list. Note that this does not

create a new list. To create new list that is the reverse of another, copy the original using the

dereference operator (@) and reverse that, i.e.,

new_list = list_reverse (@list);



Chapter 14

Error Handling

All non-trivial programs or scripts must be deal with the possibility of run-time errors. In fact, one

sign of a seasoned programmer is that such a person pays particular attention to error handling. This

chapter presents some techniques for handling errors using S-Lang. First the traditional method of

using return values to indicate errors will be discussed. Then attention will turn to S-Lang's more

powerful exception handling mechanisms.

14.1 Traditional Error Handling

The simplist and perhaps most common mechanism for signaling a failure or error in a function is

for the function to return an error code, e.g.,

define write_to_file (file, str)

{

variable fp = fopen (file, "w");

if (fp == NULL)

return -1;

if (-1 == fputs (str, fp))

return -1;

if (-1 == fclose (fp))

return -1;

return 0;

}

Here, the write_to_file function returns 0 if successful, or -1 upon failure. It is up to the calling

routine to check the return value of write_to_file and act accordingly. For instance:

if (-1 == write_to_file ("/tmp/foo", "bar"))

{

() = fprintf (stderr, "Write failed\n");

exit (1);

}

The main advantage of this technique is in its simplicity. The weakness in this approach is that the

return value must be checked for every function that returns information in this way. A more subtle

93



94 Chapter 14. Error Handling

problem is that even minor changes to large programs can become unwieldy. To illustrate the latter

aspect, consider the following function which is supposed to be so simple that it cannot fail:

define simple_function ()

{

do_something_simple ();

more_simple_stuff ();

}

Since the functions called by simple_function are not supposed to fail, simple_function itself

cannot fail and there is no return value for its callers to check:

define simple ()

{

simple_function ();

another_simple_function ();

}

Now suppose that the function do_something_simple is changed in some way that could cause it to

fail from time to time. Such a change could be the result of a bug-�x or some feature enhancement.

In the traditional error handling approach, the function would need to be modi�ed to return an

error code. That error code would have to be checked by the calling routine simple_function and

as a result, it can now fail and must return an error code. The obvious e�ect is that a tiny change in

one function can be felt up the entire call chain. While making the appropriate changes for a small

program can be a trivial task, for a large program this could be a major undertaking opening the

possibility of introducing additional errors along the way. In a nutshell, this is a code maintenance

issue. For this reason, a veteran programmer using this approach to error handling will consider

such possibilities from the outset and allow for error codes the �rst time regardless of whether the

functions can fail or not, e.g.,

define simple_function ()

{

if (-1 == do_something_simple ())

return -1;

if (-1 == more_simple_stuff ())

return -1;

return 0;

}

define simple ()

{

if (-1 == simple_function ())

return -1;

if (-1 == another_simple_function ())

return -1;

return 0;

}

Although latter code containing explicit checks for failure is more robust and more easily maintain-

able than the former, it is also less readable. Moreover, since return values are now checked the

code will execute somewhat slower than the code that lacks such checks. There is also no clean
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separation of the error handling code from the other code. This can make it di�cult to maintain if

the error handling semantics of a function change. The next section discusses another approach to

error handling that tries to address these issues.

14.2 Error Handling through Exceptions

This section describes S-Lang's exception model. The idea is that when a function encounters an

error, instead of returning an error code, it simply gives up and throws an exception. This idea will

be �eshed out in what follows.

14.2.1 Introduction to Exceptions

Consider the write_to_file function used in the previous section but adapted to throw an excep-

tion:

define write_to_file (file, str)

{

variable fp = fopen (file, "w");

if (fp == NULL)

throw OpenError;

if (-1 == fputs (str, fp))

throw WriteError;

if (-1 == fclose (fp))

throw WriteError;

}

Here the throw statement has been used to generate the appropriate exception, which in this case is

either an OpenError exception or a WriteError exception. Since the function now returns nothing

(no error code), it may be called as

write_to_file ("/tmp/foo", "bar");

next_statement;

As long as the write_to_file function encounters no errors, control passes from write_to_file

to next_statement.

Now consider what happens when the function encounters an error. For concreteness assume

that the fopen function failed causing write_to_file to throw the OpenError exception. The

write_to_file function will stop execution after executing the throw statement and return to its

caller. Since no provision has been made to handle the exception, next_statement will not execute

and control will pass to the previous caller on the call stack. This process will continue until the

exception is either handled or until control reaches the top-level at which point the interpreter will

terminate. This process is known as unwinding of the call stack.

An simple exception handler may be created through the use of a try-catch statement, such as

try

{
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write_to_file ("/tmp/foo", "bar");

}

catch OpenError:

{

message ("*** Warning: failed to open /tmp/foo.");

}

next_statement;

The above code works as follows: First the statement (or statements) inside the try-block are

executed. As long as no exception occurs, once they have executed, control will pass on to

next_statement, skipping the catch statement(s).

If an exception occurs while executing the statements in the try-block, any remaining statements

in the block will be skipped and control will pass to the �catch� portion of the exception handler.

This may consist of one or more catch statements and an optional �nally statement. Each catch

statement speci�es a list of exceptions it will handle as well as the code that is to be excecuted

when a matching exception is caught. If a matching catch statement is found for the exception,

the exception will be cleared and the code associated with the catch statement will get executed.

Control will then pass to next_statement (or �rst to the code in an optional finally block).

Catch-statements are tested against the exception in the order that they appear. Once a matching

catch statement is found, the search will terminate. If no matching catch-statement is found, an

optional finally block will be processed, and the call-stack will continue to unwind until either a

matching exception handler is found or the interpreter terminates.

In the above example, an exception handler was established for the OpenError exception. The error

handling code for this exception will cause a warning message to be displayed. Execution will resume

at next_statement.

Now suppose that write_to_file successfully opened the �le, but that for some reason, e.g., a full

disk, the actual write operation failed. In such a case, write_to_file will throw a WriteError

exception passing control to the caller. The �le will remain on the disk but not fully written. An

exception handler can be added for WriteError that removes the �le:

try

{

write_to_file ("/tmp/foo", "bar");

}

catch OpenError:

{

message ("*** Warning: failed to open /tmp/foo.");

}

catch WriteError:

{

() = remove ("/tmp/foo");

message ("*** Warning: failed to write to /tmp/foo");

}

next_statement;

Here the exception handler for WriteError uses the remove intrinsic function to delete the �le and

then issues a warning message. Note that the remove intrinsic uses the traditional error handling

mechanism� in the above example its return status has been discarded.
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Above it was assumed that failure to write to the �le was not critical allowing a warning message

to su�ce upon failure. Now suppose that it is important for the �le to be written but that it is still

desirable for the �le to be removed upon failure. In this scenario, next_statement should not get

executed upon failure. This can be achieved as follows:

try

{

write_to_file ("/tmp/foo", "bar");

}

catch WriteError:

{

() = remove ("/tmp/foo");

throw WriteError;

}

next_statement;

Here the exception handler for WriteError removes the �le and then re-throws the exception.

14.2.2 Obtaining information about the exception

When an exception is generated, an exception object is thrown. The object is a structure containing

the following �elds:

error

The exception error code (Int_Type).

descr

A brief description of the error (String_Type).

�le

The �lename containing the code that generated the exception (String_Type).

line

The line number where the exception was thrown (Int_Type).

function

The name of the currently executing function, or NULL if at top-level (String_Type).

message

A text message that may provide more information about the exception (String_Type).

object

A user-de�ned object.

If it is desired to have information about the exception, then an alternative form of the try statement

must be used:



98 Chapter 14. Error Handling

try (e)

{

% try-block code

}

catch SomeException: { code ... }

If an exception occurs while executing the code in the try-block, then the variable e will be assigned

the value of the exception object. As a simple example, suppose that the �le foo.sl consists of:

define invert_x (x)

{

if (x == 0)

throw DivideByZeroError;

return 1/x;

}

and that the code is called using

try (e)

{

y = invert_x (0);

}

catch DivideByZeroError:

{

vmessage ("Caught %s, generated by %s:%d\n",

e.descr, e.file, e.line);

vmessage ("message: %s\nobject: %S\n",

e.message, e.object);

y = 0;

}

When this code is executed, it will generate the message:

Caught Divide by Zero, generated by foo.sl:5

message: Divide by Zero

object: NULL

In this case, the value of the message �eld was assigned a default value. The reason that the object

�eld is NULL is that no object was speci�ed when the exception was generated. In order to throw an

object, a more complex form of throw statement must be used:

throw exception-name [, message [, object ] ]

where the square brackets indicate optional parameters

To illustrate this form, suppose that invert_x is modi�ed to accept an array object:

private define invert_x(x)

{

variable i = where (x == 0);

if (length (i))
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throw DivideByZeroError,

"Array contains elements that are zero", i;

return 1/x;

}

In this case, the message �eld of the exception will contain the string "Array contains elements

that are zero" and the object �eld will be set to the indices of the zero elements.

14.2.3 The �nally block

The full form of the try-catch statement obeys the following syntax:

try [(opt-e)] { try-block-statements } catch Exception-List-1 :

{ catch-block-1-statements } . . catch Exception-List-N : {
catch-block-N-statements } [ finally { finally-block-statements } ]

Here an exception-list is simply a list of exceptions such as:

catch OSError, RunTimeError:

The last clause of a try-statement is the �nally-block , which is optional and is introduced using the

finally keyword. If the try-statement contains no catch-clauses, then it must specify a �nally-

clause, otherwise a syntax error will result.

If the �nally-clause is present, then its corresponding statements will be executed regardless of

whether an exception occurs. If an exception occurs while executing the statements in the try-

block, then the �nally-block will execute after the code in any of the catch-blocks. The �nally-clause

is useful for freeing any resources (�le handles, etc) allocated by the try-block regardless of whether

an exception has occurred.

14.2.4 Creating new exceptions: the Exception Hierarchy

The following table gives the class hierarchy for the built-in exceptions.

AnyError

OSError

MallocError

ImportError

ParseError

SyntaxError

DuplicateDefinitionError

UndefinedNameError

RunTimeError

InvalidParmError

TypeMismatchError

UserBreakError

StackError

StackOverflowError

StackUnderflowError
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ReadOnlyError

VariableUnitializedError

NumArgsError

IndexError

UsageError

ApplicationError

InternalError

NotImplementedError

LimitExceededError

MathError

DivideByZeroError

ArithOverflowError

ArithUnderflowError

DomainError

IOError

WriteError

ReadError

OpenError

DataError

UnicodeError

InvalidUTF8Error

UnknownError

The above table shows that the root class of all exceptions is AnyError. This means that a catch block

for AnyError will catch any exception. The OSError, ParseError, and RunTimeError exceptions are

subclasses of the AnyError class. Subclasses of OSError include MallocError, and ImportError.

Hence a handler for the OSError exception will catch MallocError but not ParseError since the

latter is not a subclass of OSError.

The user may extend this tree with new exceptions using the new_exception function. This function

takes three arguments:

new_exception (exception-name , baseclass , description );

The exception-name is the name of the exception, baseclass represents the node in the exception

hierarchy where it is to be placed, and description is a string that provides a brief description of the

exception.

For example, suppose that you are writing some code that processes numbers stored in a binary

format. In particular, assume that the format speci�es that data be stored in a speci�c byte-

order, e.g., in big-endian form. Then it might be useful to extend the DataError exception with

EndianError. This is easily accomplished via

new_exception ("EndianError", DataError, "Invalid byte-ordering");

This will create a new exception object called EndianError subclassed on DataError, and code that

catches the DataError exception will additionally catch the EndianError exception.
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Loading Files: eval�le, autoload, and

require
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Chapter 16

Modules

16.1 Introduction

A module is a shared object that may be dynamically linked into the interpreter at run-time to

provide the interpreter with additional intrinsic functions and variables. Several modules are dis-

tributed with the stock version of the S-Lang library, including a pcre module that allows the

interpreter to make use of the Perl Compatible Regular Expression library , a png module that al-

lows the interpreter to easily read and write PNG �les, and a rand module for producing random

numbers. There are also a number of modules for the interpreter that are not distributed with the

library. See http://www.jedsoft.org/slang/modules/ for links to some of those.

16.2 Using Modules

In order to make use of a module, it must �rst be �imported� into the interpreter. There are two

ways to go about this. One is to use the import function to dynamically link-in the speci�ed module,

e.g.,

import ("pcre");

will dynamically link to the pcre module and make its symbols available to the interpreter using

the active namespace. However, this is not the preferred method for loading a module.

Module writers are encouraged to distribute a module with a �le of S-Lang code that performs the

actual import of the module. Rather than a user making direct use of the import function, the

preferred method of loading the modules is to load that �le instead. For example the pcre module is

distributed with a �le called pcre.sl that contains little more than the import("pcre") statement.

To use the pcre module, load pcre.sl, e.g.,

require ("pcre");

The main advantage of this approach to loading a module is that the functionality provided by the

module may be split between intrinsic functions in the module proper, and interpreted functions

contained in the .sl �le. In such a case, loading the module via import would only provide partial
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functionality. The png module provides a simple example of this concept. The current version of

the png module consists of a couple intrinsic functions (png_read and png_write) contained in the

shared object (png-module.so), and a number of other interpreted S-Lang functions de�ned in

png.sl. Using the import statement to load the module would miss the latter set of functions.

In some cases, the symbols in a module may con�ict with symbols that are currently de�ned by

the interpreter. In order to avoid the con�ict, it may be necessary to load the module into its own

namespace and access its symbols via the namespace pre�x. For example, the GNU Scienti�c Library

Special Function module, gslsf, de�nes a couple hundred functions, some with common names such

as zeta. In order to avoid any con�ict, it is recommended that the symbols from such a module be

imported into a separate namespace. This may be accomplished by specifying the namespace as a

second argument to the require function, e.g.,

require ("gslsf", "gsl");

.

.

y = gsl->zeta(x);

This form requires that the module's symbols be accessed via the namespace quali�er "gsl->".
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File Input/Output

S-Lang provides built-in support for two di�erent I/O facilities. The simplest interface is modeled

upon the C language stdio interface and consists of functions such as fopen, fgets, etc. The other

interface is modeled on a lower level POSIX interface consisting of functions such as open, read,

etc. In addition to permitting more control, the lower level interface permits one to access network

objects as well as disk �les.

For reading data formatted in text �les, e.g., columns of numbers, then do not overlook the high-level

routines in the slsh library. In particular, the readascii function is quite �exible and can read

data from text �les that are formatted in a variety of ways. For data stored in a standard binary

format such as HDF or FITS, then the corresponding modules should be used.

17.1 Input/Output via stdio

17.1.1 Stdio Overview

The stdio interface consists of the following functions:

• fopen: opens a �le for reading or writing.

• fclose: closes a �le opened by fopen.

• fgets: reads a line from a �le.

• fputs: writes text to a �le.

• fprintf: writes formatted text to a �le.

• fwrite: writes one of more objects to a �le.

• fread: reads a speci�ed number of objects from a �le.

• fread_bytes: reads a speci�ed number of bytes from a �le and returns them as a string.

• feof: tests if a �le pointer is at the end of the �le.

• ferror: tests whether or not the stream associated with a �le has an error.
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• clearerr: clears the end-of-�le and error indicators for a stream.

• fflush, forces all bu�ered data associated with a stream to be written out.

• ftell: queries the �le position indicator a the stream.

• fseek: sets the position of a �le position indicator of the stream.

• fgetslines: reads all the lines from a text �le and returns them as an array of strings.

In addition, the interface supports the popen and pclose functions on systems where the corre-

sponding C functions are available.

Before reading or writing to a �le, it must �rst be opened using the fopen function. The only

exceptions to this rule involve use of the pre-opened streams: stdin, stdout, and stderr. fopen

accepts two arguments: a �le name and a string argument that indicates how the �le is to be

opened, e.g., for reading, writing, update, etc. It returns a File_Type stream object that is used

as an argument to all other functions of the stdio interface. Upon failure, it returns NULL. See the

reference manual for more information about fopen.

17.1.2 Stdio Examples

In this section, some simple examples of the use of the stdio interface is presented. It is important

to realize that all the functions of the interface return something, and that return value must be

handled in some way by the caller.

The �rst example involves writing a function to count the number of lines in a text �le. To do this,

we shall read in the lines, one by one, and count them:

define count_lines_in_file (file)

{

variable fp, line, count;

fp = fopen (file, "r"); % Open the file for reading

if (fp == NULL)

throw OpenError, "$file failed to open"$;

count = 0;

while (-1 != fgets (&line, fp))

count++;

() = fclose (fp);

return count;

}

Note that &line was passed to the fgets function. When fgets returns, line will contain the line

of text read in from the �le. Also note how the return value from fclose was handled (discarded in

this case).

Although the preceding example closed the �le via fclose, there is no need to explicitly close a

�le because the interpreter will automatically close a �le when it is no longer referenced. Since the
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only variable to reference the �le is fp, it would have automatically been closed when the function

returned.

Suppose that it is desired to count the number of characters in the �le instead of the number of

lines. To do this, the while loop could be modi�ed to count the characters as follows:

while (-1 != fgets (&line, fp))

count += strlen (line);

The main di�culty with this approach is that it will not work for binary �les, i.e., �les that contain

null characters. For such �les, the �le should be opened in binary mode via

fp = fopen (file, "rb");

and then the data read using the fread function:

while (-1 != fread (&line, Char_Type, 1024, fp))

count += length (line);

The fread function requires two additional arguments: the type of object to read (Char_Type in

the case), and the number of such objects to be read. The function returns the number of objects

actually read in the form of an array of the speci�ed type, or -1 upon failure.

Sometimes it is more convenient to obtain the data from a �le in the form of a character string

instead of an array of characters. The fread_bytes function may be used in such situations. Using

this function, the equivalent of the above loop is

while (-1 != fread_bytes (&line, 1024, fp))

count += bstrlen (line);

The foreach construct also works with File_Type objects. For example, the number of characters

in a �le may be counted via

foreach ch (fp) using ("char")

count++;

Similarly, one can count the number of lines using:

foreach line (fp) using ("line")

{

num_lines++;

count += strlen (line);

}

Often one is not interested in trailing whitespace in the lines of a �le. To have trailing whitespace

automatically stripped from the lines as they are read in, use the "wsline" form, e.g.,

foreach line (fp) using ("wsline")

{

.

.

}
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Finally, it should be mentioned that none of these examples should be used to count the number of

bytes in a �le when that information is more readily accessible by another means. For example, it

is preferable to get this information via the stat_file function:

define count_chars_in_file (file)

{

variable st;

st = stat_file (file);

if (st == NULL)

throw IOError, "stat_file failed";

return st.st_size;

}

17.2 POSIX I/O

17.3 Advanced I/O techniques

The previous examples illustrate how to read and write objects of a single data-type from a �le, e.g.,

num = fread (&a, Double_Type, 20, fp);

would result in a Double_Type[num] array being assigned to a if successful. However, suppose that

the binary data �le consists of numbers in a speci�ed byte-order. How can one read such objects

with the proper byte swapping? The answer is to use the fread_bytes function to read the objects

as a (binary) character string and then unpack the resulting string into the speci�ed data type, or

types. This process is facilitated using the pack and unpack functions.

The pack function follows the syntax

BString_Type pack (format-string , item-list );

and combines the objects in the item-list according to format-string into a binary string and returns

the result. Likewise, the unpack function may be used to convert a binary string into separate data

objects:

(variable-list ) = unpack (format-string , binary-string );

The format string consists of one or more data-type speci�cation characters, and each may be

followed by an optional decimal length speci�er. Speci�cally, the data-types are speci�ed according

to the following table:

c char

C unsigned char

h short

H unsigned short

i int

I unsigned int
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l long

L unsigned long

j 16 bit int

J 16 unsigned int

k 32 bit int

K 32 bit unsigned int

f float

d double

F 32 bit float

D 64 bit float

s character string, null padded

S character string, space padded

z character string, null padded

x a null pad character

A decimal length speci�er may follow the data-type speci�er. With the exception of the s and S

speci�ers, the length speci�er indicates how many objects of that data type are to be packed or

unpacked from the string. When used with the s or S speci�ers, it indicates the �eld width to be

used. If the length speci�er is not present, the length defaults to one.

With the exception of c, C, s, S, z, and x, each of these may be pre�xed by a character that indicates

the byte-order of the object:

> big-endian order (network order)

< little-endian order

= native byte-order

The default is to use the native byte order.

Here are a few examples that should make this more clear:

a = pack ("cc", 'A', 'B'); % ==> a = "AB";

a = pack ("c2", 'A', 'B'); % ==> a = "AB";

a = pack ("xxcxxc", 'A', 'B'); % ==> a = "\0\0A\0\0B";

a = pack ("h2", 'A', 'B'); % ==> a = "\0A\0B" or "\0B\0A"

a = pack (">h2", 'A', 'B'); % ==> a = "\0\xA\0\xB"

a = pack ("<h2", 'A', 'B'); % ==> a = "\0B\0A"

a = pack ("s4", "AB", "CD"); % ==> a = "AB\0\0"

a = pack ("s4s2", "AB", "CD"); % ==> a = "AB\0\0CD"

a = pack ("S4", "AB", "CD"); % ==> a = "AB "

a = pack ("S4S2", "AB", "CD"); % ==> a = "AB CD"

When unpacking, if the length speci�er is greater than one, then an array of that length will be

returned. In addition, trailing whitespace and null characters are stripped when unpacking an object

given by the S speci�er. Here are a few examples:

(x,y) = unpack ("cc", "AB"); % ==> x = 'A', y = 'B'

x = unpack ("c2", "AB"); % ==> x = ['A', 'B']

x = unpack ("x<H", "\0\xAB\xCD"); % ==> x = 0xCDABuh

x = unpack ("xxs4", "a b c\0d e f"); % ==> x = "b c\0"

x = unpack ("xxS4", "a b c\0d e f"); % ==> x = "b c"
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17.3.1 Example: Reading /var/log/wtmp

Consider the task of reading the Unix system �le /var/log/utmp, which contains login records about

who logged onto the system. This �le format is documented in section 5 of the online Unix man

pages, and consists of a sequence of entries formatted according to the C structure utmp de�ned in

the utmp.h C header �le. The actual details of the structure may vary from one version of Unix

to the other. For the purposes of this example, consider its de�nition under the Linux operating

system running on an Intel 32 bit processor:

struct utmp {

short ut_type; /* type of login */

pid_t ut_pid; /* pid of process */

char ut_line[12]; /* device name of tty - "/dev/" */

char ut_id[2]; /* init id or abbrev. ttyname */

time_t ut_time; /* login time */

char ut_user[8]; /* user name */

char ut_host[16]; /* host name for remote login */

long ut_addr; /* IP addr of remote host */

};

On this system, pid_t is de�ned to be an int and time_t is a long. Hence, a format speci�er for

the pack and unpack functions is easily constructed to be:

"h i S12 S2 l S8 S16 l"

However, this particular de�nition is naive because it does not allow for structure padding performed

by the C compiler in order to align the data types on suitable word boundaries. Fortunately, the

intrinsic function pad_pack_formatmay be used to modify a format by adding the correct amount of

padding in the right places. In fact, pad_pack_format applied to the above format on an Intel-based

Linux system produces the result:

"h x2 i S12 S2 x2 l S8 S16 l"

Here we see that 4 bytes of padding were added.

The other missing piece of information is the size of the structure. This is useful because we would

like to read in one structure at a time using the fread function. Knowing the size of the various data

types makes this easy; however it is even easier to use the sizeof_pack intrinsic function, which

returns the size (in bytes) of the structure described by the pack format.

So, with all the pieces in place, it is rather straightforward to write the code:

variable format, size, fp, buf;

typedef struct

{

ut_type, ut_pid, ut_line, ut_id,

ut_time, ut_user, ut_host, ut_addr

} UTMP_Type;

format = pad_pack_format ("h i S12 S2 l S8 S16 l");
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size = sizeof_pack (format);

define print_utmp (u)

{

() = fprintf (stdout, "%-16s %-12s %-16s %s\n",

u.ut_user, u.ut_line, u.ut_host, ctime (u.ut_time));

}

fp = fopen ("/var/log/utmp", "rb");

if (fp == NULL)

throw OpenError, "Unable to open utmp file";

() = fprintf (stdout, "%-16s %-12s %-16s %s\n",

"USER", "TTY", "FROM", "LOGIN@");

variable U = @UTMP_Type;

while (-1 != fread (&buf, Char_Type, size, fp))

{

set_struct_fields (U, unpack (format, buf));

print_utmp (U);

}

() = fclose (fp);

A few comments about this example are in order. First of all, note that a new data type called

UTMP_Type was created, although this was not really necessary. The �le was opened in binary mode,

but this too was optional because, for example, on a Unix system there is no distinction between

binary and text modes. The print_utmp function does not print all of the structure �elds. Finally,

last but not least, the return values from fprintf and fclose were handled by discarding them.
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slsh

slsh, also known as the S-Lang shell, is an application that is included in the stock S-Lang distribu-

tion. As some binary distributions include slsh as a separate package it must be installed separately,

e.g.,

apt-get install slsh

on Debian Linux systems. The use of slsh in its interactive mode was discussed brie�y in the 1

(Introduction). This chapter concentrates on the use of slsh for writing executable S-Lang scripts.

18.1 Running slsh

When run the �help command-line argument, slsh displays a brief usage message:

# slsh --help

Usage: slsh [OPTIONS] [-|file [args...]]

--help Print this help

--version Show slsh version information

-e string Execute 'string' as S-Lang code

-g Compile with debugging code, tracebacks, etc

-n Don't load personal init file

--init file Use this file instead of ~/.slshrc

--no-readline Do not use readline

-i Force interactive input

-t Test mode. If slsh_main exists, do not call it

-v Show verbose loading messages

-Dname Define "name" as a preprocessor symbol

Note: - and -i are mutually exclusive

Default search path: /usr/local/share/slsh

When started with no arguments, slsh will start in interactive mode and take input from the

terminal. As the usage message indicates slsh loads a personal initialization �le called .slshrc (on
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non-Unix systems, this �le is called slsh.rc). The contents of this �le must be valid S-Lang code,

but are otherwise arbitrary. One use of this �le is to de�ne commonly used functions and to setup

personal search paths.

slsh will run in non-interactive mode when started with a �le (also known as a �script�) as its �rst

(non-option) command-line argument. The rest of the arguments on the command line serve as

arguments for the script. The next section deals with the use of the cmdopt routines for parsing

those arguments.

slsh will read the script and feed it to the S-Lang interpreter for execution. If the script de�nes

a public function called slsh_main, then slsh will call it after the script has been loaded. In this

sense, slsh_main is analogous to main in C or C++.

A typical slsh script is be structured as

#!/usr/bin/env slsh

.

.

define slsh_main ()

{

.

.

}

The �rst line of the script Unix-speci�c and should be familiar to Unix users. Typically, the code

before slsh_main will load any required modules or packages, and de�ne other functions to be used

by the script.

Although the use of slsh_main is not required, its use is strongly urged for several reasons. In

addition to lending uniformity to S-Lang scripts, slsh_main is well supported by the S-Lang

debugger (sldb) and the S-Lang pro�ler (slprof), which look for slsh_main as a starting point for

script execution. Also as scripts necessarily do something (otherwise they have no use), slsh's -t

command-line option may be used to turn o� the automatic execution of slsh_main. This allows

the syntax of the entire script to be checked for errors instead of running it.

18.2 Command line processing

The script's command-line arguments are availble to it via the __argc and __argv intrinsic variables.

Any optional arguments represented by these variables may be parsed using slsh's cmdopt routines.

As a useful illustration, consider the script that the author uses to rip tracks from CDs to OGG

encoded �les. The name of the script is cd2ogg.sl. Running the script without arguments causes

it to issue a usage message:

Usage: cd2ogg.sl [options] device

Options:

--help This help

--work DIR Use DIR as working dir [/tmp/29848]

--root DIR Use DIR/GENRE as root for final output [/data/CDs]

--genre GENRE Use GENRE for output dir
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--no-rip Skip rip stage

--no-normalize Skip normalizing stage

--no-encode Don't encode to ogg

--albuminfo PERFORMER/TITLE

Use PERFORMER/TITLE if audio.cddb is absent

As the message shows, some of the options require an argument while others do not. The cd2ogg.sl

script looks like:

#!/usr/bin/env slsh

require ("cmdopt");

.

.

private define exit_usage ()

{

() = fprintf (stderr, "Usage: %s [options] device\n",

path_basename (__argv[0]));

() = fprintf (stderr, "Options:\n");

.

.

exit (1);

}

private define parse_album_info (albuminfo)

{

...

}

define slsh_main ()

{

variable genre = NULL;

variable no_rip = 0;

variable no_normalize = 0;

variable no_encode = 0;

variable opts = cmdopt_new ();

opts.add ("help", &exit_usage);

opts.add ("device", &CD_Device; type="str");

opts.add ("work", &Work_Dir; type="str");

opts.add ("root", &Root_Dir; type="str");

opts.add ("genre", &genre; type="str");

opts.add ("albuminfo", &parse_album_info; type="str");

opts.add ("no-normalize", &no_normalize);

opts.add ("no-encode", &no_encode);

variable i = opts.process (__argv, 1);

if (i + 1 != __argc)

exit_usage ();

CD_Device = __argv[i];

.

.

}
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There are several points that one should take from the above example. First, to use the cmdopt

interface it is necessary to load it. This is accomplished using the require statement. Second, the

above example uses cmdopt's object-oriented style interface through the use of the add and process

methods of the cmdopt object created by the call to cmdopt_new. Third, two of the command

line options make use of callback functions: the exit_usage function will get called when �help

appears on the command line, and the parse_album_info function will get called to handle the

�albuminfo option. Options such as �no-encode do not take a value and the presence of such an

option on the command line causes the variable associated with the option to be set to 1. Other

options such as �genre will cause the variable associated with them to be set of the value speci�ed

on the command-line. Finally, the process method returns the index of __argv that corresponds to

�non-option� argument. In this case, for proper usage of the script, that argument would correspond

to device representing the CD drive.

For more information about the cmdopt interface, see the documentation for cmdopt_add:

slsh> help cmdopt_add
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Debugging

There are several ways to debug a S-Lang script. When the interpreter encounters an uncaught

exception, it can generate a traceback report showing where the error occurred and the values of

local variables in the function call stack frames at the time of the error. Often just knowing where

the error occurs is all that is required to correct the problem. More subtle bugs may require a deeper

analysis to diagnose the problem. While one can insert the appropriate print statements in the code

to get some idea about what is going on, it may be simpler to use the interactive debugger.

19.1 Tracebacks

When the value of the _traceback variable is non-zero, the interpreter will generate a traceback

report when it encounters an error. This variable may be set by putting the line

_traceback = 1;

at the top of the suspect �le. If the script is running in slsh, then invoking slsh using the -g option

will enable tracebacks:

slsh -g myscript.sl

If _traceback is set to a positive value, the values of local variables will be printed in the traceback

report. If set to a negative integer, the values of the local variables will be absent.

Here is an example of a traceback report:

Traceback: error

***string***:1:verror:Run-Time Error

/grandpa/d1/src/jed/lib/search.sl:78:search_generic_search:Run-Time Error

Local Variables:

String_Type prompt = "Search forward:"

Integer_Type dir = 1

Ref_Type line_ok_fun = &_function_return_1

String_Type str = "ascascascasc"

Char_Type not_found = 1
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Integer_Type cs = 0

/grandpa/d1/src/jed/lib/search.sl:85:search_forward:Run-Time Error

There are several ways to read this report; perhaps the simplest is to read it from the bot-

tom. This report says that on line 85 in search.sl the search_forward function called the

search_generic_search function. On line 78 it called the verror function, which in turn called

error. The search_generic_search function contains 6 local variables whose values at the time of

the error are given by the traceback output. The above example shows that a local variable called

"not_found" had a Char_Type value of 1 at the time of the error.

19.2 Using the sldb debugger

The interpreter contains a number of hooks that support a debugger. sldb consists of a set of

functions that use these hooks to implement a simple debugger. Although written for slsh, the

debugger may be used by other S-Lang interpreters that permit the loading of slsh library �les.

The examples presented here are given in the context of slsh.

In order to use the debugger, the code to to be debugged must be loaded with debugging info enabled.

This can be in done several ways, depending upon the application embedding the interpreter.

For applications that support a command line, the simplest way to access the debugger is to use the

sldb function with the name of the �le to be debugged:

require ("sldb");

sldb ("foo.sl");

When called without an argument, sldb will prompt for input. This can be useful for setting or

removing breakpoints.

Another mechanism to access the debugger is to put

require ("sldb");

sldb_enable ();

at the top of the suspect �le. Any �les loaded by the �le will also be compiled with debugging

support, making it unnecessary to add this to all �les.

If the �le contains any top-level executable statements, the debugger will display the line to be

executed and prompt for input. If the �le does not contain any executable statements, the debugger

will not be activated until one of the functions in the �le is executed.

As a concrete example, consider the following contrived slsh script called buggy.sl:

define divide (a, b, i)

{

return a[i] / b;

}

define slsh_main ()

{

variable x = [1:5];
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variable y = x*x;

variable i;

_for i (0, length(x), 1)

{

variable z = divide (x, y, i);

() = fprintf (stdout, "%g/%g = %g", x[i], y[i], z);

}

}

Running this via

slsh buggy.sl

yields

Expecting Double_Type, found Array_Type

./buggy.sl:13:slsh_main:Type Mismatch

More information may be obtained by using slsh's -g option to cause a traceback report to be

printed:

slsh -g buggy.sl

Expecting Double_Type, found Array_Type

Traceback: fprintf

./buggy.sl:13:slsh_main:Type Mismatch

Local variables for slsh_main:

Array_Type x = Integer_Type[5]

Array_Type y = Integer_Type[5]

Integer_Type i = 0

Array_Type z = Integer_Type[5]

Error encountered while executing slsh_main

From this one can see that the problem is that z is an array and not a scalar as expected.

To run the program under debugger control, startup slsh and load the �le using the sldb function:

slsh> sldb ("./buggy.sl");

Note the use of "./" in the �lename. This may be necessary if the �le is not in the slsh search path.

The above command causes execution to stop with the following displayed:

slsh_main at ./buggy.sl:9

9 variable x = [1:5];

(sldb)

This shows that the debugger has stopped the script at line 9 of buggy.sl and is waiting for input.

The print function may be used to print the value of an expression or variable. Using it to display

the value of x yields

(sldb) print x

Caught exception:Variable Uninitialized Error

(sldb)
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This is because x has not yet been assigned a value and will not be until line 9 has been executed.

The next command may be used to execute the current line and stop at the next one:

(sldb) next

10 variable y = x*x;

(sldb)

The step command functions almost the same as next, except when a function call is involved. In

such a case, the next command will step over the function call but step will cause the debugger to

enter the function and stop there.

Now the value of x may be displayed using the print command:

(sldb) print x

Integer_Type[5]

(sldb) print x[0]

1

(sldb) print x[-1]

5

(sldb)

The list command may be used to get a list of the source code around the current line:

(sldb) list

5 return a[i] / b;

6 }

7 define slsh_main ()

8 {

9 variable x = [1:5];

10 variable y = x*x;

11 variable i;

12 _for i (0, length(x), 1)

13 {

14 variable z = divide (x, y, i);

15 () = fprintf (stdout, "%g/%g = %g", x[i], y[i], z);

The break function may be used to set a breakpoint. For example,

(sldb) break 15

breakpoint #1 set at ./buggy.sl:15

will set a break point at the line 15 of the current �le.

The cont command may be used to continue execution until the next break point:

(sldb) cont

Breakpoint 1, slsh_main

at ./buggy.sl:15

15 () = fprintf (stdout, "%g/%g = %g", x[i], y[i], z);

(sldb)

Using the next command produces:
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Received Type Mismatch error. Entering the debugger

15 () = fprintf (stdout, "%g/%g = %g", x[i], y[i], z);

This shows that during the execution of line 15, a TypeMismatchError was generated. Let's see

what caused it:

(sldb) print x[i]

1

(sldb) print y[i]

1

(sldb) print z

Integer_Type[5]

This shows that the problem was caused by z being an array and not a scalar� something that was

already known from the traceback report. Now let's see why it is not a scalar. Start the program

again and set a breakpoint in the divide function:

slsh_main at ./buggy.sl:9

9 variable x = [1:5];

(sldb) break divide

breakpoint #1 set at divide

(sldb) cont

Breakpoint 1, divide

at ./buggy.sl:5

5 return a[i] / b;

(sldb)

The values of a[i]/b and b may be printed:

(sldb) print a[i]/b

Integer_Type[5]

(sldb) print b

Integer_Type[5]

From this it is easy to see that z is an array because b is an array. The �x for this is to change line

5 to

z = a[i]/b[i];

The debugger supports several other commands. For example, the up and down commands may

be used to move up and down the stack-frames, and where command may be used to display the

stack-frames. These commands are useful for examining the variables in the other frames:

(sldb) where

#0 ./buggy.sl:5:divide

#1 ./buggy.sl:14:slsh_main

(sldb) up

#1 ./buggy.sl:14:slsh_main

14 variable z = divide (x, y, i);

(sldb) print x
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Integer_Type[5]

(sldb) down

#0 ./buggy.sl:5:divide

5 return a[i] / b;

(sldb) print z

Integer_Type[5]

On some operating systems, the debugger's watchfpu command may be used to help isolate �oating

point exceptions. Consider the following example:

define solve_quadratic (a, b, c)

{

variable d = b^2 - 4.0*a*c;

variable x = -b + sqrt (d);

return x / (2.0*a);

}

define print_root (a, b, c)

{

vmessage ("%f %f %f %f\n", a, b, c, solve_quadratic (a,b,c));

}

print_root (1,2,3);

Running it via slsh produces:

1.000000 2.000000 3.000000 nan

Now run it in the debugger:

<top-level> at ./example.sl:12

11 print_root (1,2,3);

(sldb) watchfpu FE_INVALID

(sldb) cont

*** FPU exception bits set: FE_INVALID

Entering the debugger.

solve_quadratic at ./t.sl:4

4 variable x = -b + sqrt (d);

This shows the the NaN was produced on line 4.

The watchfpu command may be used to watch for the occurrence of any combination of the following

exceptions

FE_DIVBYZERO

FE_INEXACT

FE_INVALID

FE_OVERFLOW

FE_UNDERFLOW

by the bitwise-or operation of the desired combination. For instance, to track both FE_INVALID and

FE_OVERFLOW, use:

(sldb) watchfpu FE_INVALID | FE_OVERFLOW
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Pro�ling

20.1 Introduction

This chapter deals with the subject of writing e�cient S-Lang code, and using the S-Lang pro�ler

to isolate places in the code that could bene�t from optimization.

The most important consideration in writing e�cient code is the choice of algorithm. A poorly

optimized good algorithm will almost always execute faster than a highly optimized poor algorithm.

In choosing an algorithm, it is also important to choose the right data structures for its implemen-

tation. As a simple example, consider the task of counting words. Any algorithm would involve a

some sort of table with word/number pairs. Such a table could be implemented using a variety of

data structures, e.g., as a pair of arrays or lists representing the words and corresponding numbers,

as an array of structures, etc. But in this case, the associative array is ideally suited to the task:

a = Assoc_Type[Int_Type, 0];

while (get_word (&word))

a[word]++;

Note the conciseness of the above code. It is important to appreciate the fact that S-Lang is a byte-

compiled interpreter that executes statements much slower than that of a language that compiles

to machine code. The overhead of the processing of byte-codes by the interpreter may be used to

roughly justify the rule of thumb that the smaller the code is, the faster it will run.

When possible, always take advantage of S-Lang's powerful array facilities. For example, consider

the act of clipping an array by setting all values greater than 10 to 10. Rather than coding this as

n = length(a);

for (i = 0; i < n; i++)

if (a[i] > 10) a[i] = 10;

it should be written as

a[where(a>10)] = 10;

Finally, do not overlook the specialized modules that are available for S-Lang.
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20.2 Using the pro�ler

slprof is an executable slsh script that implements a standalone pro�ler for slsh scripts. The script

is essentially a front-end for a set of interpreter hooks de�ned in a �le called profile.sl, which may

be used by any application embedding S-Lang. The use of the pro�ler will �rst be demonstrated

in the context of slprof, and after that follows a discussion of how to use profile.sl for other

S-Lang applications.

(To be completed...)
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Regular Expressions

The S-Lang library includes a regular expression (RE) package that may be used by an applica-

tion embedding the library. The RE syntax should be familiar to anyone acquainted with regular

expressions. In this section the syntax of the S-Lang regular expressions is discussed.

NOTE: At the moment, the S-Lang regular expressions do not support UTF-8 encoded strings.

The S-Lang library will most likely migrate to the use of the PCRE regular expression library,

deprecating the use of the S-Lang REs in the process. For these reasons, the user is encouraged to

make use of the pcre module if possible.

21.1 S-Lang RE Syntax

A regular expression speci�es a pattern to be matched against a string, and has the property that

the contcatenation of two REs is also a RE.

The S-Lang library supports the following standard regular expressions:

. match any character except newline

* matches zero or more occurrences of previous RE

+ matches one or more occurrences of previous RE

? matches zero or one occurrence of previous RE

^ matches beginning of a line

$ matches end of line

[ ... ] matches any single character between brackets.

For example, [-02468] matches `-' or any even digit.

and [-0-9a-z] matches `-' and any digit between 0 and 9

as well as letters a through z.

\< Match the beginning of a word.

\> Match the end of a word.

\( ... \)

\1, \2, ..., \9 Matches the match specified by nth \( ... \)

expression.

In addition the following extensions are also supported:
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\c turn on case-sensitivity (default)

\C turn off case-sensitivity

\d match any digit

\e match ESC char

Here are some simple examples:

"�int " matches the "int " at the beginning of a line.

"\<money\>" matches "money" but only if it appears as a separate word.

"�$" matches an empty line.

A more complex pattern is

"\(\<[a-zA-Z]+\>\)[ ]+\1\>"

which matches any word repeated consecutively. Note how the grouping operators \( and \) are

used to de�ne the text matched by the enclosed regular expression, and then subsequently referred

to \1.

Finally, remember that when used in string literals either in the S-Lang language or in the C

language, care must be taken to "double-up" the '\' character since both languages treat it as an

escape character.

21.2 Di�erences between S-Lang and egrep REs

There are several di�erences between S-Lang regular expressions and, e.g., egrep regular expres-

sions.

The most notable di�erence is that the S-Lang regular expressions do not support the OR operator

| in expressions. This means that "a|b" or "a\|b" do not have the meaning that they have in regular

expression packages that support egrep-style expressions.

The other main di�erence is that while S-Lang regular expressions support the grouping operators

\( and \), they are only used as a means of specifying the text that is matched. That is, the

expression

"@\([a-z]*\)@.*@\1@"

matches "xxx@abc@silly@abc@yyy", where the pattern \1 matches the text enclosed by the \(
and \) expressions. However, in the current implementation, the grouping operators are not used to

group regular expressions to form a single regular expression. Thus expression such as "\(hello\)*"
is not a pattern to match zero or more occurrences of "hello" as it is in e.g., egrep.

One question that comes up from time to time is why doesn't S-Lang simply employ some posix-

compatible regular expression library. The simple answer is that, at the time of this writing, none

exists that is available across all the platforms that the S-Lang library supports (Unix, VMS, OS/2,

win32, win16, BEOS, MSDOS, and QNX) and can be distributed under both the GNU licenses. It

is particularly important that the library and the interpreter support a common set of regular

expressions in a platform independent manner.
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S-Lang 2 Interpreter NEWS

This chapter describes features that were added to various 2.0 releases. For a much more complete

and detailed list of changes, see the changes.txt �le that is distributed with the library.

A.1 What's new for S-Lang 2.2

• The ternary expression was added:

expression = condition ? val1 : val2

If condition is non-zero, then expression = val1 , otherwise expression = val2 .

• The break and continue statements support an optional integer that indicates how many loop

levels the statement a�ects, e.g., the break statement in

while (1)

{

loop (10)

{

break 2;

}

}

will cause both loops to be terminated.

• Multiline strings have been added:

"This is a \

multiline \

string"

`This is

another multiline

string that

does not require

a \ for continuation`
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• List_Type objects may be indexed using an array of indices instead of just a single scalar

index.

The following intrinsic function were added in version 2.2:

sumsq

Equivalent to sum(x*x).

expm1

More accurate version of exp(x)-1 for x near 0.

log1p

More accurate version of log(1+x) for x near 0.

list_to_array

Creates an array from a list.

string_matches

A convenient alternative to the string_match and string_match_nth functions.

_close

Close an integer descriptor.

_fileno

Returns the descriptor as an integer.

dup2_fd

Duplicates a �le descriptor via the dup2 POSIX function.

getsid, killpg, getpriority, setpriority

These functions correspond to the corresponding POSIX functions.

ldexp, frexp

If x == a*2�b, where 0.5<=a<1.0 then (a,b)=frexp(x), and x=ldexp(a,b).

The following functions have been enhanced:

hypot

If given a single array argument X, it returns the equivalent of sqrt(sum(X*X).

polynom

The calling interface to this function was changed and support added for arrays.

The following modules were added to version 2.2:

zlib

A module that wraps the popular z compression library.



A.2. What's new for S-Lang 2.1 129

fork

A module that wraps the fork, exec*, and waitpid functions.

sysconf

A module that implements interfaces to the POSIX sysconf, pathconf, and confstr func-

tions.

The following library �les and functions were add to slsh:

process.sl

The code in this �le utilizes the fork module to implement the new_process function, which

allows the caller to easily create and communicate with subprocesses and pipelines.

A.2 What's new for S-Lang 2.1

• Short circuiting boolean operators || and && have been added to the languange. The use of

orelse and andelse constructs are nolonger necessary nor encouraged.

• Quali�ers have been added to the language as a convenient and powerful mechanism to pass

optional information to functions.

• Structure de�nitions allow embeded assignemnts, e.g,

s = struct {foo = 3, bar = "hello" };

• Comparison expressions such as a<b<c are now interpretered as (a<b)and(b<c).

• The ifnot keyword was added as an alternative to !if. The use of !if has been deprecated.

• Looping constructs now support a "then" clause that will get executed if the loop runs to

completion, e.g.,

loop (20)

{

if (this ())

break; % The then clause will NOT get executed

}

then do_that ();

Note: then is now a reserved word.

• A �oating point array of exactly N elements may be created using the form [a:b:#N], where

the elements are uniformly spaced and run from a to b, inclusive.

• References to array elements and structure �elds are now supported, e.g., &A[3], &s.foo.

• An exception may be rethrown by calling "throw" without any arguments:

try { something (); }

catch AnyError: { do_this (); throw; }

The following intrinsic function were added in version 2.1:
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wherenot(x)

Equivalent to where (not(x))

_$(str)

Evaluates strings with embedded "dollar" variables, e.g., _$("$TERM").

__push_list/__pop_list

Push list items onto the stack

prod(x)

Computes the product of an array a[0]*a[1]*...

minabs(x), maxabs(x)

Equivalent to min(abs(x)) and max(abs(x)), resp.

getpgrp, setgid, getpgid

Get and set the process group ids (Unix).

setsid

Create a new session (Unix).

The following modules were added to version 2.1:

iconv

Performs character-set conversion using the iconv library.

onig

A regular expression module using oniguruma RE library.

The following library �les and functions were add to slsh:

readascii

A �exible and power ascii (as opposed to binary) data �le reader.

cmdopt

A set of functions that vastly simplify the parsing of command line options.

Also a history and completion mechanism was added to the S-Lang readline interface, and as a

result, slsh now supports history and command/�le completion.

A.3 What's new for S-Lang 2.0

Here is a brief list of some of the new features and improvements in S-Lang 2.0.

• slsh, the generic S-Lang interpreter, now supports and interactive command-line mode with

readline support.
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• Native support for Unicode via UTF-8 throughout the library.

• A List_Type object has been added to the language, e.g.,

x = {1, 2.7, "foo", [1:10]};

will create a (heterogeneous) list of 4 elements.

• A much improved exception handling model.

• Variable expansion within string literals:

file = "$HOME/src/slang-$VERSION/"$;

• Operator overloading for user-de�ned types. For example it is possible to de�ne a meaning to

X+Y where X and Y are de�ned as

typedef struct { x, y, z } Vector;

define vector (x,y,z) { variable v = @Vector; v.x=x; v.y=y; v.z=z;}

X = vector (1,2,3);

Y = vector (4,5,6);

• Syntactic sugar for objected-oriented style method calls. S-Lang 1 code such as

(@s.method)(s, args);

may be written much more simply as

s.method(args);

This should make "object-oriented" code somewhat more readable. See also the next section

if your code uses constructs such as

@s.method(args);

because it is not supported by S-Lang 2.

• More intrinsic functions including math functions such as hypot, atan2, floor, ceil, round,

isnan, isinf, and many more.

• Support for long long integers.

X = 18446744073709551615ULL;

• Large �le support

• Performance improvements. The S-Lang 2 interpreter is about 20 percent faster for many

operations than the previous version.

• Better debugging support including an interactive debugger. See the section on 19.2 (Using

the sldb debugger) for more information.

See the relevent chapters in in the manual for more information.
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A.4 Upgrading to S-Lang 2

For the most part S-Lang 2 is backwards-compatible with S-Lang 1. However there are a few

important di�erences that need to be understood before upgrading to version 2.

++ and � operators in function calls

Previously the ++ and {�} operators were permitted in a function argument list, e.g.,

some_function (x++, x);

Such uses are �agged as syntax errors and need to be changed to

x++; some_function (x);

Array indexing of strings

Array indexing of strings uses byte-semantics and not character-semantics. This distinction is

important only if UTF-8 mode is in e�ect. If you use array indexing with functions that use

character semantics, then your code may not work properly in UTF-8 mode. For example, one

might have used

i = is_substr (a, b);

if (i) c = a[[0:i-2]];

to extract that portion of a that preceeds the occurrence of b in a. This may nolonger work

in UTF-8 mode where bytes and characters are not generally the same. The correct way to

write the above is to use the substr function since it uses character semantics:

i = is_substr (a, b);

if (i) c = substr (a, 1, i-1);

Array indexing with negative integer ranges

Previously the interpretation of a range array was context sensitive. In an indexing situation

[0:-1] was used to index from the �rst through the last element of an array, but outside this

context, [0:-1] was an empty array. For S-Lang 2, the meaning of such arrays is always

the same regardless of the context. Since by itself [0:-1] represents an empty array, indexing

with such an array will also produce an empty array. The behavior of scalar indices has not

changed: A[-1] still refers to the last element of the array.

Range arrays with an implied endpoint make sense only in indexing situations. Hence the

value of the endpoint can be inferred from the context. Such arrays include [*], [:-1], etc.

Code that use index-ranges with negative valued indices such as

B = A[[0:-2]]; % Get all but the last element of A

will have to be changed to use an array with an implied endpoint:

B = A[[:-2]]; % Get all but the last element of A

Similarly, code such as

B = A[[-3:-1]]; % Get the last 3 elements of A

must be changed to
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B = A[[-3:]];

Dereferencing function members of a structure

Support for the non-parenthesized form of function member dereferencing has been dropped.

Code such as

@s.foo(args);

will need to be changed to use the parenthesized form:

(@s.foo)(args);

The latter form will work in both S-Lang 1 and S-Lang 2.

If your code passes the structure as the �rst argument of the method call, e.g.,

(@s.foo)(s, moreargs);

then it may be changed to

s.foo (moreargs);

However, this objected-oriented form of method calling is not supported by S-Lang 1.

ERROR_BLOCKS

Exception handling via ERROR_BLOCKS is still supported but deprecated. If your code uses

ERROR_BLOCKS it should be changed to use the new exception handling model. For example,

code that looks like:

ERROR_BLOCK { cleanup_after_error (); }

do_something ();

.

.

should be changed to:

variable e;

try (e)

{

do_something ();

.

.

}

catch RunTimeError:

{

cleanup_after_error ();

throw e.error, e.message;

}

Code that makes use of EXECUTE_ERROR_BLOCK

ERROR_BLOCK { cleanup_after_error (); }

do_something ();

.

.

EXECUTE_ERROR_BLOCK;
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should be changed to make use of a finally clause:

variable e;

try (e)

{

do_something ();

.

.

}

finally

{

cleanup_after_error ();

}

It is not possible to emulate the complete semantics of the _clear_error function. However,

those semantics are �awed and �xing the problems associated with the use of _clear_error

was one of the primary reasons for the new exception handling model. The main problem with

the _clear_error method is that it causes execution to resume at the byte-code following the

code that triggered the error. As such, _clear_error de�nes no absolute resumption point. In

contrast, the try-catch exception model has well-de�ned points of execution. With the above

caveats, code such as

ERROR_BLOCK { cleanup_after_error (); _clear_error ();}

do_something ();

.

.

should be changed to:

variable e;

try (e)

{

do_something ();

.

.

}

catch RunTimeError:

{

cleanup_after_error ();

}

And code using _clear_error in conjunction with EXECUTE_ERROR_BLOCK:

ERROR_BLOCK { cleanup_after_error (); _clear_error ();}

do_something ();

.

.

EXECUTE_ERROR_BLOCK;

should be changed to:

variable e;

try (e)

{
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do_something ();

.

.

}

catch RunTimeError:

{

cleanup_after_error ();

}

finally:

{

cleanup_after_error ();

}

fread

When reading Char_Type and UChar_Type objects the S-Lang 1 version of fread returned

a binary string (BString_Type if the number of characters read was greater than one, or a

U/Char_Type if the number read was one. In other words, the resulting type depended upon

how many bytes were read with no way to predict the resulting type in advance. In contrast,

when reading, e.g, Int_Type objects, fread returned an Int_Type when it read one integer,

or an array of Int_Type if more than one was read. For S-Lang 2, the behavior of fread with

respect to UChar_Type and Char_Type types was changed to have the same semantics as the

other data types.

The upshot is that code that used

nread = fread (&str, Char_Type, num_wanted, fp)

will no longer result in str being a BString_Type if nread > 1. Instead, str will now become

a Char_Type[nread] object. In order to read a speci�ed number of bytes from a �le in the

form of a string, use the fread_bytes function:

#if (_slang_version >= 20000)

nread = fread_bytes (&str, num_wanted, fp);

#else

nread = fread (&str, Char_Type, num_wanted, fp)

#endif

The above will work with both versions of the interpreter.

strtrans

The strtrans function has been changed to support Unicode. One rami�cation of this is that

when mapping from one range of characters to another, the length of the ranges must now be

equal.

str_delete_chars

This function was changed to support unicode character classes. Code such as

y = str_delete_chars (x, "\\a");

is now implies the deletion of all alphabetic characters from x. Previously it meant to delete

the backslashes and as from from x. Use

y = str_delete_chars (x, "\\\\a");
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to achieve the latter.

substr, is_substr, strsub

These functions use character-semantics and not byte-semantics. The distinction is important

in UTF-8 mode. If you use array indexing in conjunction with these functions, then read on.
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Copyright

The S-Lang library is distributed under the terms of the GNU General Public License.

B.1 The GNU Public License

GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.

59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies

of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change it. By

contrast, the GNU General Public License is intended to guarantee your freedom to share and change

free software�to make sure the software is free for all its users. This General Public License applies

to most of the Free Software Foundation's software and to any other program whose authors commit

to using it. (Some other Free Software Foundation software is covered by the GNU Library General

Public License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses

are designed to make sure that you have the freedom to distribute copies of free software (and charge

for this service if you wish), that you receive source code or can get it if you want it, that you can

change the software or use pieces of it in new free programs; and that you know you can do these

things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or

to ask you to surrender the rights. These restrictions translate to certain responsibilities for you if

you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give

the recipients all the rights that you have. You must make sure that they, too, receive or can get

the source code. And you must show them these terms so they know their rights.

137
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We protect your rights with two steps: (1) copyright the software, and (2) o�er you this license

which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author's protection and ours, we want to make certain that everyone understands that

there is no warranty for this free software. If the software is modi�ed by someone else and passed

on, we want its recipients to know that what they have is not the original, so that any problems

introduced by others will not re�ect on the original authors' reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger

that redistributors of a free program will individually obtain patent licenses, in e�ect making the

program proprietary. To prevent this, we have made it clear that any patent must be licensed for

everyone's free use or not licensed at all.

The precise terms and conditions for copying, distribution and modi�cation follow.

GNU GENERAL PUBLIC LICENSE

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed by the copyright

holder saying it may be distributed under the terms of this General Public License. The "Program",

below, refers to any such program or work, and a "work based on the Program" means either the

Program or any derivative work under copyright law: that is to say, a work containing the Program

or a portion of it, either verbatim or with modi�cations and/or translated into another language.

(Hereinafter, translation is included without limitation in the term "modi�cation".) Each licensee

is addressed as "you".

Activities other than copying, distribution and modi�cation are not covered by this License; they

are outside its scope. The act of running the Program is not restricted, and the output from the

Program is covered only if its contents constitute a work based on the Program (independent of

having been made by running the Program). Whether that is true depends on what the Program

does.

1. You may copy and distribute verbatim copies of the Program's source code as you receive it, in any

medium, provided that you conspicuously and appropriately publish on each copy an appropriate

copyright notice and disclaimer of warranty; keep intact all the notices that refer to this License and

to the absence of any warranty; and give any other recipients of the Program a copy of this License

along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option o�er

warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a work

based on the Program, and copy and distribute such modi�cations or work under the terms of

Section 1 above, provided that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices

stating that you changed the files and the date of any change.

b) You must cause any work that you distribute or publish, that in

whole or in part contains or is derived from the Program or any

part thereof, to be licensed as a whole at no charge to all third

parties under the terms of this License.
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c) If the modified program normally reads commands interactively

when run, you must cause it, when started running for such

interactive use in the most ordinary way, to print or display an

announcement including an appropriate copyright notice and a

notice that there is no warranty (or else, saying that you provide

a warranty) and that users may redistribute the program under

these conditions, and telling the user how to view a copy of this

License. (Exception: if the Program itself is interactive but

does not normally print such an announcement, your work based on

the Program is not required to print an announcement.)

These requirements apply to the modi�ed work as a whole. If identi�able sections of that work are

not derived from the Program, and can be reasonably considered independent and separate works

in themselves, then this License, and its terms, do not apply to those sections when you distribute

them as separate works. But when you distribute the same sections as part of a whole which is a

work based on the Program, the distribution of the whole must be on the terms of this License,

whose permissions for other licensees extend to the entire whole, and thus to each and every part

regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely

by you; rather, the intent is to exercise the right to control the distribution of derivative or collective

works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or with

a work based on the Program) on a volume of a storage or distribution medium does not bring the

other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in object code

or executable form under the terms of Sections 1 and 2 above provided that you also do one of the

following:

a) Accompany it with the complete corresponding machine-readable

source code, which must be distributed under the terms of Sections

1 and 2 above on a medium customarily used for software interchange; or,

b) Accompany it with a written offer, valid for at least three

years, to give any third party, for a charge no more than your

cost of physically performing source distribution, a complete

machine-readable copy of the corresponding source code, to be

distributed under the terms of Sections 1 and 2 above on a medium

customarily used for software interchange; or,

c) Accompany it with the information you received as to the offer

to distribute corresponding source code. (This alternative is

allowed only for noncommercial distribution and only if you

received the program in object code or executable form with such

an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modi�cations to it. For

an executable work, complete source code means all the source code for all modules it contains, plus
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any associated interface de�nition �les, plus the scripts used to control compilation and installation

of the executable. However, as a special exception, the source code distributed need not include

anything that is normally distributed (in either source or binary form) with the major components

(compiler, kernel, and so on) of the operating system on which the executable runs, unless that

component itself accompanies the executable.

If distribution of executable or object code is made by o�ering access to copy from a designated place,

then o�ering equivalent access to copy the source code from the same place counts as distribution

of the source code, even though third parties are not compelled to copy the source along with the

object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided

under this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is

void, and will automatically terminate your rights under this License. However, parties who have

received copies, or rights, from you under this License will not have their licenses terminated so long

as such parties remain in full compliance.

5. You are not required to accept this License, since you have not signed it. However, nothing else

grants you permission to modify or distribute the Program or its derivative works. These actions

are prohibited by law if you do not accept this License. Therefore, by modifying or distributing the

Program (or any work based on the Program), you indicate your acceptance of this License to do so,

and all its terms and conditions for copying, distributing or modifying the Program or works based

on it.

6. Each time you redistribute the Program (or any work based on the Program), the recipient

automatically receives a license from the original licensor to copy, distribute or modify the Program

subject to these terms and conditions. You may not impose any further restrictions on the recipients'

exercise of the rights granted herein. You are not responsible for enforcing compliance by third parties

to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason

(not limited to patent issues), conditions are imposed on you (whether by court order, agreement or

otherwise) that contradict the conditions of this License, they do not excuse you from the conditions

of this License. If you cannot distribute so as to satisfy simultaneously your obligations under this

License and any other pertinent obligations, then as a consequence you may not distribute the

Program at all. For example, if a patent license would not permit royalty-free redistribution of the

Program by all those who receive copies directly or indirectly through you, then the only way you

could satisfy both it and this License would be to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the

balance of the section is intended to apply and the section as a whole is intended to apply in other

circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right

claims or to contest validity of any such claims; this section has the sole purpose of protecting the

integrity of the free software distribution system, which is implemented by public license practices.

Many people have made generous contributions to the wide range of software distributed through

that system in reliance on consistent application of that system; it is up to the author/donor to

decide if he or she is willing to distribute software through any other system and a licensee cannot

impose that choice.



B.1. The GNU Public License 141

This section is intended to make thoroughly clear what is believed to be a consequence of the rest

of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either by patents

or by copyrighted interfaces, the original copyright holder who places the Program under this Li-

cense may add an explicit geographical distribution limitation excluding those countries, so that

distribution is permitted only in or among countries not thus excluded. In such case, this License

incorporates the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General Public

License from time to time. Such new versions will be similar in spirit to the present version, but

may di�er in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program speci�es a version number

of this License which applies to it and "any later version", you have the option of following the

terms and conditions either of that version or of any later version published by the Free Software

Foundation. If the Program does not specify a version number of this License, you may choose any

version ever published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distribution

conditions are di�erent, write to the author to ask for permission. For software which is copyrighted

by the Free Software Foundation, write to the Free Software Foundation; we sometimes make ex-

ceptions for this. Our decision will be guided by the two goals of preserving the free status of all

derivatives of our free software and of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY

FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN

OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES

PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED

OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS

TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE

PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,

REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING

WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR

REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,

INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING

OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED

TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY

YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER

PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE

POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs
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If you develop a new program, and you want it to be of the greatest possible use to the public,

the best way to achieve this is to make it free software which everyone can redistribute and change

under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of each

source �le to most e�ectively convey the exclusion of warranty; and each �le should have at least

the "copyright" line and a pointer to where the full notice is found.

<one line to give the program's name and a brief idea of what it does.>

Copyright (C) 19yy <name of author>

This program is free software; you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation; either version 2 of the License, or

(at your option) any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program; if not, write to the Free Software

Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an interactive

mode:

Gnomovision version 69, Copyright (C) 19yy name of author

Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type `show w'.

This is free software, and you are welcome to redistribute it

under certain conditions; type `show c' for details.

The hypothetical commands `show w' and `show c' should show the appropriate parts of the General

Public License. Of course, the commands you use may be called something other than `show w' and

`show c'; they could even be mouse-clicks or menu items�whatever suits your program.

You should also get your employer (if you work as a programmer) or your school, if any, to sign a

"copyright disclaimer" for the program, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program

`Gnomovision' (which makes passes at compilers) written by James Hacker.

<signature of Ty Coon>, 1 April 1989

Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary programs.

If your program is a subroutine library, you may consider it more useful to permit linking proprietary

applications with the library. If this is what you want to do, use the GNU Library General Public

License instead of this License.



B.2. The Unicode Inc. Copyright 143

B.2 The Unicode Inc. Copyright

This software makes use of the Unicode tables published by Unicode, Inc under the following terms:

COPYRIGHT AND PERMISSION NOTICE

Copyright (c) 1991-2009 Unicode, Inc. All rights reserved. Distributed

under the Terms of Use in http://www.unicode.org/copyright.html.

Permission is hereby granted, free of charge, to any person

obtaining a copy of the Unicode data files and any associated

documentation (the "Data Files") or Unicode software and any

associated documentation (the "Software") to deal in the Data Files

or Software without restriction, including without limitation the

rights to use, copy, modify, merge, publish, distribute, and/or sell

copies of the Data Files or Software, and to permit persons to whom

the Data Files or Software are furnished to do so, provided that (a)

the above copyright notice(s) and this permission notice appear with

all copies of the Data Files or Software, (b) both the above

copyright notice(s) and this permission notice appear in associated

documentation, and (c) there is clear notice in each modified Data

File or in the Software as well as in the documentation associated

with the Data File(s) or Software that the data or software has been

modified.

THE DATA FILES AND SOFTWARE ARE PROVIDED "AS IS", WITHOUT WARRANTY

OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE

WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE

COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE BE LIABLE FOR

ANY CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY

DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,

WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS

ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE

OF THE DATA FILES OR SOFTWARE.

Except as contained in this notice, the name of a copyright holder

shall not be used in advertising or otherwise to promote the sale,

use or other dealings in these Data Files or Software without prior

written authorization of the copyright holder.
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